摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-(((trimethylsilyl)oxy)methyl)-1,3-dioxolan-2-one | 864079-61-8

中文名称
——
中文别名
——
英文名称
4-(((trimethylsilyl)oxy)methyl)-1,3-dioxolan-2-one
英文别名
4-[(trimethylsiloxy)methyl]-1,3-dioxolan-2-one;1,3-Dioxolan-2-one, 4-[[(trimethylsilyl)oxy]methyl]-;4-(trimethylsilyloxymethyl)-1,3-dioxolan-2-one
4-(((trimethylsilyl)oxy)methyl)-1,3-dioxolan-2-one化学式
CAS
864079-61-8
化学式
C7H14O4Si
mdl
——
分子量
190.271
InChiKey
NVJRKBSFAZVERU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    250.0±13.0 °C(Predicted)
  • 密度:
    1.057±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.37
  • 重原子数:
    12
  • 可旋转键数:
    3
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.86
  • 拓扑面积:
    44.8
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-(((trimethylsilyl)oxy)methyl)-1,3-dioxolan-2-one盐酸 作用下, 以 甲醇 为溶剂, 反应 2.0h, 以99.5%的产率得到羟甲基二氧杂戊环酮
    参考文献:
    名称:
    一种碳酸甘油酯合成方法
    摘要:
    本发明涉及碳酸甘油酯领域,具体为一种高纯度的碳酸甘油酯合成方法,通过利用缩水甘油制备高纯度的碳酸甘油酯。首先将缩水甘油、三乙胺和二氯甲烷入到反应釜中,降温至零度,滴加硅基保护基团,滴加完毕,恢复室温反应过夜,水洗、干燥、蒸馏得到硅基保护的缩水甘油,然后利用催化剂与二氧化碳加成得到硅基保护的碳酸甘油酯,再利用酸脱保护,蒸馏掉溶剂得到高纯度的碳酸甘油酯。本发明工艺操作简单,原料可回收套用,产品纯度高,危险性小,适合工业化生产。
    公开号:
    CN107226802B
  • 作为产物:
    描述:
    羟甲基二氧杂戊环酮六甲基二硅氮烷N-溴代丁二酰亚胺(NBS) 作用下, 以 二氯甲烷 为溶剂, 以57%的产率得到4-(((trimethylsilyl)oxy)methyl)-1,3-dioxolan-2-one
    参考文献:
    名称:
    Structure-property relationship and transport properties of structurally related silyl carbonate electrolytes
    摘要:
    Ten different substituted structurally related linear and cyclic carbonates were synthesized and investigated as electrolyte solvents for lithium-ion cells. Synthesis of the compounds, mainly silyl carbonates, was carried out via catalytic CO2 addition, nucleophilic substitution or hydrosilylation. Besides the ten synthesized compounds a binary mixture of a cyclic and linear silyl carbonate, propylene carbonate (PC), diethyl carbonate (DEC) and a binary mixture thereof were analyzed as a function of molar lithium ((bistrifluoromethyl) sulfonyl) imide LiTFSI ratio in order to develop a structure-property relationship. The extrapolation of the temperature-dependent ionic conductivities using Vogel-Tamman-Fulcher (VTF) equation revealed a solvent assisted ionic transport mechanism. The strength of interaction between the lithium-ion and the respective carbonates was investigated via C-13 and Si-29 NMR measurements by the change of the chemical shift upon LiTFSI addition. The results show that the interaction of the lithium ion with the cyclic carbonates is much stronger compared to the linear ones and varies among the different substituents. These findings were in good accordance with ionicities represented by the Walden product. The diffusivities of Li+ and TFSI were determined via Pulsed Field Gradient STimulated Echo (PGSTE)-NMR. The hydrodynamic radii calculated thereof demonstrate the superior coordination ability of the cyclic carbonates as compared to linear structures. Furthermore, Haven ratios indicate rather different dissociation abilities of different carbonate solvents, depending on the structural fragment of the solvents. (C)2015 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.electacta.2015.05.108
点击查看最新优质反应信息

文献信息

  • Efficient bio-conversion of glycerol to glycerol carbonate catalyzed by lipase extracted from Aspergillus niger
    作者:Madalina Tudorache、Loredana Protesescu、Simona Coman、Vasile I. Parvulescu
    DOI:10.1039/c2gc16294f
    日期:——
    A biocatalytic synthesis of glycerol carbonate (GlyC), as an added-value product of renewable glycerol, has been developed using a catalytic route in which glycerol (Gly) was reacting with dimethyl carbonate (DMC) in the presence of lipase under solvent-free conditions. The enzyme screening indicated lipase from Aspergillus niger as the most efficient biocatalyst for the GlyC synthesis. After the optimization of the reaction conditions it was established that the best results corresponded to 12% (w/w) Aspergillus nigerlipase, to a glycerol : DMC molar ratio of 1 : 10, to an incubation time of 4 h and to an incubation temperature of 60 °C. Consequently, the glycerol conversion was around 74%, the yield in GlyC of 59.3% and the selectivity to GlyC of 80.3%. Recycling experiments demonstrated that the biocatalyst can be successfully used for several reaction cycles (at least 4 times) and confirmed its very high stability under the reaction conditions.
    已开发出一种生物催化合成甘油碳酸酯(GlyC),作为可再生甘油的增值产品,该催化路线中甘油(Gly)在无溶剂条件下与碳酸二甲酯(DMC)反应,使用了脂肪酶。酶筛选表明,黑曲霉(Aspergillus niger)来源的脂肪酶是GlyC合成中最有效的生物催化剂。在优化反应条件后,确定最佳结果对应于12%(w/w)黑曲霉脂肪酶、1:10的甘油 : DMC摩尔比、4小时的孵育时间以及60°C的孵育温度。因此,甘油转化率约为74%,GlyC的产率为59.3%,对GlyC的选择性为80.3%。回收实验表明,该生物催化剂可以成功用于多个反应周期(至少4次),并确认其在反应条件下具有非常高的稳定性。
  • Recyclable biocatalytic composites of lipase-linked magnetic macro-/nano-particles for glycerol carbonate synthesis
    作者:Madalina Tudorache、Loredana Protesescu、Alina Negoi、Vasile I. Parvulescu
    DOI:10.1016/j.apcata.2012.06.016
    日期:2012.9
    Lipase immobilized biocatalysts were prepared via enzyme binding onto functionalized surface of magnetic micro-/nano-particles. In order to achieve an efficient biocatalytic composite the immobilization parameters (e.g. lipase concentration, pH of the immobilization phase, activation reagent) were correlated with support morphology and type of the functional group on the support surface. The characterization of the lipase-particle composites was made using FTIR and UV-Vis techniques. The biocatalyst activity was evaluated in the transesterification reaction of glycerol with DMC (dimethyl carbonate). Under solvent-free conditions the conversion of glycerol was of 48.6% with the selectivity in glycerol carbonate (GlyC) of 85%. The biocatalyst composites were easily recycled using the magnetic properties of the support. Compared to free enzyme, recycling experiments demonstrated that the operational stability of the heterogeneous biocatalyst was improved (fifteen cycles for bio-composites vs. four cycles for free enzyme). (C) 2012 Elsevier BM. All rights reserved.
  • Structure-property relationship and transport properties of structurally related silyl carbonate electrolytes
    作者:Manuela Philipp、Rajesh Bhandary、Florian J. Groche、Monika Schönhoff、Bernhard Rieger
    DOI:10.1016/j.electacta.2015.05.108
    日期:2015.8
    Ten different substituted structurally related linear and cyclic carbonates were synthesized and investigated as electrolyte solvents for lithium-ion cells. Synthesis of the compounds, mainly silyl carbonates, was carried out via catalytic CO2 addition, nucleophilic substitution or hydrosilylation. Besides the ten synthesized compounds a binary mixture of a cyclic and linear silyl carbonate, propylene carbonate (PC), diethyl carbonate (DEC) and a binary mixture thereof were analyzed as a function of molar lithium ((bistrifluoromethyl) sulfonyl) imide LiTFSI ratio in order to develop a structure-property relationship. The extrapolation of the temperature-dependent ionic conductivities using Vogel-Tamman-Fulcher (VTF) equation revealed a solvent assisted ionic transport mechanism. The strength of interaction between the lithium-ion and the respective carbonates was investigated via C-13 and Si-29 NMR measurements by the change of the chemical shift upon LiTFSI addition. The results show that the interaction of the lithium ion with the cyclic carbonates is much stronger compared to the linear ones and varies among the different substituents. These findings were in good accordance with ionicities represented by the Walden product. The diffusivities of Li+ and TFSI were determined via Pulsed Field Gradient STimulated Echo (PGSTE)-NMR. The hydrodynamic radii calculated thereof demonstrate the superior coordination ability of the cyclic carbonates as compared to linear structures. Furthermore, Haven ratios indicate rather different dissociation abilities of different carbonate solvents, depending on the structural fragment of the solvents. (C)2015 Elsevier Ltd. All rights reserved.
  • 一种碳酸甘油酯合成方法
    申请人:沈阳金久奇科技有限公司
    公开号:CN107226802B
    公开(公告)日:2019-05-21
    本发明涉及碳酸甘油酯领域,具体为一种高纯度的碳酸甘油酯合成方法,通过利用缩水甘油制备高纯度的碳酸甘油酯。首先将缩水甘油、三乙胺和二氯甲烷入到反应釜中,降温至零度,滴加硅基保护基团,滴加完毕,恢复室温反应过夜,水洗、干燥、蒸馏得到硅基保护的缩水甘油,然后利用催化剂与二氧化碳加成得到硅基保护的碳酸甘油酯,再利用酸脱保护,蒸馏掉溶剂得到高纯度的碳酸甘油酯。本发明工艺操作简单,原料可回收套用,产品纯度高,危险性小,适合工业化生产。
查看更多