Cationic Chalcone Antibiotics. Design, Synthesis, and Mechanism of Action
摘要:
This paper describes how the introduction of "cationic" aliphatic amino groups in the chalcone scaffold results in potent antibacterial compounds. It is shown that the most favorable position for the aliphatic amino group is the 2-position of the B-ring, in particular in combination with a lipophilic substituent in the 5-position of the beta-ring. We demonstrate that the compounds act by unselective disruption of cell membranes. Introduction of an additional aliphatic amino group in the A-ring results in compounds that are selective for bacterial membranes combined with a high antibacterial activity against both Gram-positive and -negative pathogens. The most potent compound in this study (78) has an MIC value of 2 mu M against methicillin resistant Staphylococus aureus.
Cationic Chalcone Antibiotics. Design, Synthesis, and Mechanism of Action
摘要:
This paper describes how the introduction of "cationic" aliphatic amino groups in the chalcone scaffold results in potent antibacterial compounds. It is shown that the most favorable position for the aliphatic amino group is the 2-position of the B-ring, in particular in combination with a lipophilic substituent in the 5-position of the beta-ring. We demonstrate that the compounds act by unselective disruption of cell membranes. Introduction of an additional aliphatic amino group in the A-ring results in compounds that are selective for bacterial membranes combined with a high antibacterial activity against both Gram-positive and -negative pathogens. The most potent compound in this study (78) has an MIC value of 2 mu M against methicillin resistant Staphylococus aureus.
The invention provides novel diamino-functionalised chalcone derivatives and analogues thereof. Use of the compounds, or compositions comprising them, as pharmaceutically active agents, in particular against bacterial and parasitic infections, is also disclosed. The invention further relates to a method for detecting inhibitory effects against e.g., bacteria, parasites, fungi, and helminths. The chalcones of the invention carry amino substituents and exhibit enhanced biological effects combined with improved metabolic and physicochemical properties, making the compounds useful as drug substances, in particular as antiparasitic and bacteriostatic agents.
[EN] FUSED TETRACYCLIC COMPOUND, PREPARATION METHOD THEREFOR AND APPLICATION THEREOF IN MEDICINE<br/>[FR] COMPOSÉ TÉTRACYCLIQUE FUSIONNÉ, SON PROCÉDÉ DE PRÉPARATION ET SON UTILISATION EN MÉDECINE<br/>[ZH] 稠合四环类化合物、其制备方法及其在医药上的应用
The invention provides novel diamino-functionalised chalcone derivatives and analogues thereof. Use of the compounds, or compositions comprising them, as pharmaceutically active agents, in particular against bacterial and parasitic infections, is also disclosed. The invention further relates to a method for detecting inhibitory effects against e.g., bacteria, parasites, fungi, and helminths. The chalcones of the invention carry amino substituents and exhibit enhanced biological effects combined with improved metabolic and physicochemical properties, making the compounds useful as drug substances, in particular as antiparasitic and bacteriostatic agents.