摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(-)-lyxo-(4S,5S,6S)-7-(tert-butyldiphenylsiloxy)-5,6-epoxyhept-1-en-4-ol | 131380-36-4

中文名称
——
中文别名
——
英文名称
(-)-lyxo-(4S,5S,6S)-7-(tert-butyldiphenylsiloxy)-5,6-epoxyhept-1-en-4-ol
英文别名
(1S)-1-[(2S,3S)-3-[[tert-butyl(diphenyl)silyl]oxymethyl]oxiran-2-yl]but-3-en-1-ol
(-)-lyxo-(4S,5S,6S)-7-(tert-butyldiphenylsiloxy)-5,6-epoxyhept-1-en-4-ol化学式
CAS
131380-36-4
化学式
C23H30O3Si
mdl
——
分子量
382.575
InChiKey
RIWQDLYIJTYNQZ-FKBYEOEOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.27
  • 重原子数:
    27
  • 可旋转键数:
    9
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.39
  • 拓扑面积:
    42
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    (-)-lyxo-(4S,5S,6S)-7-(tert-butyldiphenylsiloxy)-5,6-epoxyhept-1-en-4-ol吡啶硫酸氯化二乙基铝 作用下, 以 二氯甲烷 为溶剂, 反应 55.0h, 生成 (-)-arabino-(4S,5S,6S)-7-(tert-butyldiphenylsiloxy)hept-1-ene-4,5,6-triol 4,5-carbonate
    参考文献:
    名称:
    A stereochemically general synthesis of 2-deoxyhexoses via the asymmetric allylboration of 2,3-epoxy aldehydes
    摘要:
    A stereochemically general strategy for the synthesis of 2-deoxyhexoses is described. This new approach involves the asymmetric allylboration of epoxy aldehydes 12 and 13, prepared via the Sharpless asymmetric epoxidation reaction, as a means of establishing the stereochemistry of the sugar backbone. Thus, the matched double asymmetric allylborations of 12 and 13 using tartrate allylboronates (R,R)- and (S,S)-7, respectively, provide erythro epoxy alcohols 14 and 16 with excellent diastereoselectivity ( > 96:4) and enantioselectivity (greater-than-or-equal-to 96% ee). The mismatched double asymmetric reactions of 12 and 13 using (S,S)- and (R,R)-7, respectively, provided the diastereomeric threo epoxy alcohols 15 and 17 with lower (ca. 75:25) but still synthetically useful selectivity. The enantiomeric purity of the major diastereomer in each of these reactions was determined to be greater than that of the epoxy aldehyde precursors. Epoxy alcohols 14 and 16 were converted with excellent selectivity to the l-arabino (21) and l-xylo (26) tetrols via neighboring group assisted alpha-substitution reactions of the derived phenylurethane derivatives 18 and 23. Stereochemically complementary beta-opening reactions were accomplished by treating primary alcohols 38, 40, 42, and 44 [prepared from 14-17, respectively, by ethoxyethylation of C(4)-OH and removal of the C(7)-tert-butyldiphenylsilyl (TBDPS) ethers] with NaOH in aqueous t-BuOH at reflux. Acid-catalyzed hydrolysis of the C(4)-ethoxyethyl ethers then provided tetrols d-35 (from 14), d-21 (from 15), d-30 (from 16), and d-26 (from 17), each with excellent stereoselectivity. These tetrols were isolated and fully characterized as the tetraacetate derivatives 36, 22, 31, and 27, respectively. These beta-opening reactions proceed by way of an epoxide migration (29 to 33) that inverts the stereochemistry at C(6) and activates C(7) toward nucleophilic attack. It is necessary that the C(4) hydroxyl be protected in three of the four stereoisomeric series to minimize competitive epoxide migration pathways (cf. 29 to 32a). arabino tetrol 21 and lyxo tetrol 30 were converted to 2-deoxyglucose and 2-deoxygalactose, respectively, by a standard ozonolytic sequence and then to 2-deoxyglucitol pentaacetate (45) and 2-deoxygalactitol pentaacetate (46) via NaBH4 reduction of the 2-deoxy sugars, thereby confirming all stereochemical assignments. The epoxide beta-opening technology was also applied to epoxy benzyl ether 47 (prepared from 14) and epoxy BOM ether 49 (deriving from 16). These reactions provide tetrol derivatives 48 and 50, respectively, in which the C(4)- and C(5)-hydroxyl functionality are suitably differentiated for use in subsequent synthetic sequences.
    DOI:
    10.1021/jo00004a053
  • 作为产物:
    参考文献:
    名称:
    A stereochemically general synthesis of 2-deoxyhexoses via the asymmetric allylboration of 2,3-epoxy aldehydes
    摘要:
    A stereochemically general strategy for the synthesis of 2-deoxyhexoses is described. This new approach involves the asymmetric allylboration of epoxy aldehydes 12 and 13, prepared via the Sharpless asymmetric epoxidation reaction, as a means of establishing the stereochemistry of the sugar backbone. Thus, the matched double asymmetric allylborations of 12 and 13 using tartrate allylboronates (R,R)- and (S,S)-7, respectively, provide erythro epoxy alcohols 14 and 16 with excellent diastereoselectivity ( > 96:4) and enantioselectivity (greater-than-or-equal-to 96% ee). The mismatched double asymmetric reactions of 12 and 13 using (S,S)- and (R,R)-7, respectively, provided the diastereomeric threo epoxy alcohols 15 and 17 with lower (ca. 75:25) but still synthetically useful selectivity. The enantiomeric purity of the major diastereomer in each of these reactions was determined to be greater than that of the epoxy aldehyde precursors. Epoxy alcohols 14 and 16 were converted with excellent selectivity to the l-arabino (21) and l-xylo (26) tetrols via neighboring group assisted alpha-substitution reactions of the derived phenylurethane derivatives 18 and 23. Stereochemically complementary beta-opening reactions were accomplished by treating primary alcohols 38, 40, 42, and 44 [prepared from 14-17, respectively, by ethoxyethylation of C(4)-OH and removal of the C(7)-tert-butyldiphenylsilyl (TBDPS) ethers] with NaOH in aqueous t-BuOH at reflux. Acid-catalyzed hydrolysis of the C(4)-ethoxyethyl ethers then provided tetrols d-35 (from 14), d-21 (from 15), d-30 (from 16), and d-26 (from 17), each with excellent stereoselectivity. These tetrols were isolated and fully characterized as the tetraacetate derivatives 36, 22, 31, and 27, respectively. These beta-opening reactions proceed by way of an epoxide migration (29 to 33) that inverts the stereochemistry at C(6) and activates C(7) toward nucleophilic attack. It is necessary that the C(4) hydroxyl be protected in three of the four stereoisomeric series to minimize competitive epoxide migration pathways (cf. 29 to 32a). arabino tetrol 21 and lyxo tetrol 30 were converted to 2-deoxyglucose and 2-deoxygalactose, respectively, by a standard ozonolytic sequence and then to 2-deoxyglucitol pentaacetate (45) and 2-deoxygalactitol pentaacetate (46) via NaBH4 reduction of the 2-deoxy sugars, thereby confirming all stereochemical assignments. The epoxide beta-opening technology was also applied to epoxy benzyl ether 47 (prepared from 14) and epoxy BOM ether 49 (deriving from 16). These reactions provide tetrol derivatives 48 and 50, respectively, in which the C(4)- and C(5)-hydroxyl functionality are suitably differentiated for use in subsequent synthetic sequences.
    DOI:
    10.1021/jo00004a053
点击查看最新优质反应信息

文献信息

  • Ipaktschi, Junes; Heydari, Akbar; Kalinowski, Hans-Otto, Chemische Berichte, 1994, vol. 127, # 5, p. 905 - 910
    作者:Ipaktschi, Junes、Heydari, Akbar、Kalinowski, Hans-Otto
    DOI:——
    日期:——
  • ROUSH, WILLIAM R.;STRAUB, JULIE A.;VAN, NIEUWENHZA MICHAEL S., J. ORG. CHEM., 56,(1991) N, C. 1636-1648
    作者:ROUSH, WILLIAM R.、STRAUB, JULIE A.、VAN, NIEUWENHZA MICHAEL S.
    DOI:——
    日期:——
  • A stereochemically general synthesis of 2-deoxyhexoses via the asymmetric allylboration of 2,3-epoxy aldehydes
    作者:William R. Roush、Julie A. Straub、Michael S. VanNieuwenhze
    DOI:10.1021/jo00004a053
    日期:1991.2
    A stereochemically general strategy for the synthesis of 2-deoxyhexoses is described. This new approach involves the asymmetric allylboration of epoxy aldehydes 12 and 13, prepared via the Sharpless asymmetric epoxidation reaction, as a means of establishing the stereochemistry of the sugar backbone. Thus, the matched double asymmetric allylborations of 12 and 13 using tartrate allylboronates (R,R)- and (S,S)-7, respectively, provide erythro epoxy alcohols 14 and 16 with excellent diastereoselectivity ( > 96:4) and enantioselectivity (greater-than-or-equal-to 96% ee). The mismatched double asymmetric reactions of 12 and 13 using (S,S)- and (R,R)-7, respectively, provided the diastereomeric threo epoxy alcohols 15 and 17 with lower (ca. 75:25) but still synthetically useful selectivity. The enantiomeric purity of the major diastereomer in each of these reactions was determined to be greater than that of the epoxy aldehyde precursors. Epoxy alcohols 14 and 16 were converted with excellent selectivity to the l-arabino (21) and l-xylo (26) tetrols via neighboring group assisted alpha-substitution reactions of the derived phenylurethane derivatives 18 and 23. Stereochemically complementary beta-opening reactions were accomplished by treating primary alcohols 38, 40, 42, and 44 [prepared from 14-17, respectively, by ethoxyethylation of C(4)-OH and removal of the C(7)-tert-butyldiphenylsilyl (TBDPS) ethers] with NaOH in aqueous t-BuOH at reflux. Acid-catalyzed hydrolysis of the C(4)-ethoxyethyl ethers then provided tetrols d-35 (from 14), d-21 (from 15), d-30 (from 16), and d-26 (from 17), each with excellent stereoselectivity. These tetrols were isolated and fully characterized as the tetraacetate derivatives 36, 22, 31, and 27, respectively. These beta-opening reactions proceed by way of an epoxide migration (29 to 33) that inverts the stereochemistry at C(6) and activates C(7) toward nucleophilic attack. It is necessary that the C(4) hydroxyl be protected in three of the four stereoisomeric series to minimize competitive epoxide migration pathways (cf. 29 to 32a). arabino tetrol 21 and lyxo tetrol 30 were converted to 2-deoxyglucose and 2-deoxygalactose, respectively, by a standard ozonolytic sequence and then to 2-deoxyglucitol pentaacetate (45) and 2-deoxygalactitol pentaacetate (46) via NaBH4 reduction of the 2-deoxy sugars, thereby confirming all stereochemical assignments. The epoxide beta-opening technology was also applied to epoxy benzyl ether 47 (prepared from 14) and epoxy BOM ether 49 (deriving from 16). These reactions provide tetrol derivatives 48 and 50, respectively, in which the C(4)- and C(5)-hydroxyl functionality are suitably differentiated for use in subsequent synthetic sequences.
查看更多

同类化合物

(2-溴乙氧基)-特丁基二甲基硅烷 骨化醇杂质DCP 马来酸双(三甲硅烷)酯 顺式-二氯二(二甲基硒醚)铂(II) 顺-N-(1-(2-乙氧基乙基)-3-甲基-4-哌啶基)-N-苯基苯酰胺 降钙素杂质13 降冰片烯基乙基三甲氧基硅烷 降冰片烯基乙基-POSS 间-氨基苯基三甲氧基硅烷 镁,氯[[二甲基(1-甲基乙氧基)甲硅烷基]甲基]- 锑,二溴三丁基- 铷,[三(三甲基甲硅烷基)甲基]- 铂(0)-1,3-二乙烯-1,1,3,3-四甲基二硅氧烷 钾(4-{[二甲基(2-甲基-2-丙基)硅烷基]氧基}-1-丁炔-1-基)(三氟)硼酸酯(1-) 金刚烷基乙基三氯硅烷 辛醛,8-[[(1,1-二甲基乙基)二甲基甲硅烷基]氧代]- 辛甲基-1,4-二氧杂-2,3,5,6-四硅杂环己烷 辛基铵甲烷砷酸盐 辛基衍生化硅胶(C8)ZORBAX?LP100/40C8 辛基硅三醇 辛基甲基二乙氧基硅烷 辛基三甲氧基硅烷 辛基三氯硅烷 辛基(三苯基)硅烷 辛乙基三硅氧烷 路易氏剂-3 路易氏剂-2 路易士剂 试剂3-[Tris(trimethylsiloxy)silyl]propylvinylcarbamate 试剂2-(Trimethylsilyl)cyclopent-2-en-1-one 试剂11-Azidoundecyltriethoxysilane 西甲硅油杂质14 衣康酸二(三甲基硅基)酯 苯胺,4-[2-(三乙氧基甲硅烷基)乙基]- 苯磺酸,羟基-,盐,单钠聚合甲醛,1,3,5-三嗪-2,4,6-三胺和脲 苯甲醇,a-[(三苯代甲硅烷基)甲基]- 苯基二甲基氯硅烷 苯基二甲基乙氧基硅 苯基乙酰氧基三甲基硅烷 苯基三辛基硅烷 苯基三甲氧基硅烷 苯基三乙氧基硅烷 苯基三丁酮肟基硅烷 苯基三(异丙烯氧基)硅烷 苯基三(2,2,2-三氟乙氧基)硅烷 苯基(3-氯丙基)二氯硅烷 苯基(1-哌啶基)甲硫酮 苯乙基三苯基硅烷 苯丙基乙基聚甲基硅氧烷 苯-1,3,5-三基三(三甲基硅烷)