Nickel-catalyzed coupling reaction of alkyl halides with aryl Grignard reagents in the presence of 1,3-butadiene: mechanistic studies of four-component coupling and competing cross-coupling reactions
the selectivity of the nickel-catalyzed four-component coupling reactions of alkyl fluorides, aryl Grignard reagents, and two molecules of 1,3-butadiene that affords a 1,6-octadiene carbon framework bearing alkyl and aryl groups at the 3- and 8-positions, respectively, and the competing cross-coupling reaction. Both the four-component coupling reaction and the cross-coupling reaction are triggered
undergoes selective dimerization and alkylarylation with alkylfluorides and aryl Grignardreagents to give 1,6‐octadienes with alkyl and aryl groups at the 3‐ and 8‐positions, respectively, by the consecutive formation of three carbon–carbon bonds. The formation of an anionic nickel complex plays an important role in forming C−C bonds with alkylfluorides.