Switchable Regioselective C−H Activation/Annulation of Acrylamides with Alkynes for the Synthesis of 2‐Pyridones
摘要:
A catalyst‐based switchable regioselective C−H activation/annulation of acrylamides with propargyl carbonates has been developed, delivering C5 or C6 alkenyl substituted 2‐pyridones. This robust protocol proceeds with a broad substrate scope and good functional group tolerance under redox‐neutral reaction conditions. More significantly, this reaction is highly effective with previously challenging unsymmetrical alkynes, including unbiased alkyl‐alkyl substituted alkynes, with perfect and switchable regioselectivity. Additionally, mechanistic studies and DFT calculations were performed to shed light on the switchable regioselectivity.
Complexity‐increasing Domino reactions comprising C−H allenylation, a Diels–Alder reaction, and a retro‐Diels–Alder reaction were realized by a versatile catalyst derived from earth‐abundant, non‐toxic manganese. The C−H activation/Diels–Alder/retro‐Diels–Alder alkyne annulation sequence provided step‐economical access to valuable indolone alkaloid derivatives through a facile organometallic C−H activation
Ortho C-H allenylation of electron-rich benzene derivatives with propargylic alcohol derivatives has been a challenge, due to their great innate tendency toward a para C-H allenylation via an SN2'-type substitution process. Here, we described a Ru(II)-catalyzed regioselective ortho C-H allenylation of electron-rich aniline and phenol derivatives, which allows the previously challenging synthesis of a
Palladium-Catalyzed Regioselective Cyclopropanating Allenylation of (2,3-Butadienyl)malonates with Propargylic Carbonates and Their Application to Synthesize Cyclopentenones
作者:Wei Shu、Guochen Jia、Shengming Ma
DOI:10.1021/ol802465k
日期:2009.1.1
An efficient and highly regioselective route to synthesize polysubstituted 1,3,4-alkatrien-2-yl cyclopropane derivatives via Pd(0)-catalyzed highly regioselective coupling cyclization of (2,3-butadienyl)malonate or bis(phenylsulfonyl)methane with propargylic carbonates was reported. The reaction proceeded smoothly under neutral conditions to afford the products in 73-96% yields. The products may be efficiently converted to cyclopentenone derivatives via a catalytic Pauson-Khand reaction under ambient conditions.