摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

silver(III) fluoride | 91899-63-7

中文名称
——
中文别名
——
英文名称
silver(III) fluoride
英文别名
——
silver(III) fluoride化学式
CAS
91899-63-7
化学式
AgF3
mdl
——
分子量
164.863
InChiKey
PGGQSYHSNJQLOQ-UHFFFAOYSA-K
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.26
  • 重原子数:
    4.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为反应物:
    描述:
    silver(III) fluoride 以 further solvent(s) 为溶剂, 生成
    参考文献:
    名称:
    Silver trifluoride: preparation, crystal structure, some properties, and comparison with AuF3
    摘要:
    Red, diamagnetic AgF3 is precipitated from anhydrous hydrogen fluoride (AHF) solutions of AgF4- salts by addition of fluoro acids (L) such as BF3, PF5, or AsF5: AgF4- + L --> AgF3 + LF-. With additional AsF5, silver(III) is reduced: AgF3 + AsF5 --> AgFAsF6 + 1/2 F2. Such reduction does not occur with BF3, and the latter acid is therefore preferred for the preparation of stoichiometric AgF3. AgF3 is thermodynamically unstable and, in contact with AHF, at approximately 20-degrees-C, loses F2 in less than 19 h according to the equation 3AgF3 --> Ag3F8 + 1/2F2. The trifluoride is isostructural with AuF3. To provide for meaningful comparisons, the structure of AuF3 was redetermined. AgF3 and AuF3 were successfully refined in space group P6(1)22-D62 (No. 178) by using the Rietveld method from time-of-flight neutron powder diffraction data from 100-mg samples contained in 2-mm capillary tubes. The 7762 observations for AgF3 yielded a = 5.0782 (2) angstrom, c = 15.4524 (8) angstrom, and V = 345.10 (2) angstrom-3, the reliability parameters for the structure being R(wp) = 6.21 and R(p) = 3.83%. From the 7646 observations for AuF3, a = 5.1508 (1) angstrom, c = 16.2637 (7) angstrom, V = 373.68 (2) angstrom-3, and R(wp) = 11.21 and R(p) = 7.58%. The silver or gold atom lies at the center of an elongated octahedron with two Ag-F(1) = 1.990 (3) angstrom, two Au-F(1) = 1.998 (2) angstrom, two Ag-F(2) = 1.863 (4) angstrom, and two Au-F(2) = 1.868 (3) angstrom, the approximately square, isodimensional AF4 units being joined by symmetrical mu-fluoro bridges (two F(1) in cis relationship in the AF4 unit) to form the 6(1) (or 6(5)) helical chains where Ag-F(1)-Ag = 123.2 (2)-degrees and Au-F(1)-Au = 119.3 (2)-degrees. The approximately 5-angstrom-3 smaller formula unit volume of AgF3 compared with AuF3 and the and the shorter z axis interatomic distance (Ag-F = 2.540 (4), Au-F = 2.756 (8) angstrom) are in accord with the tighter binding of the Ag(III) d-orbital electrons evident in the strong oxidizing properties of Ag(III). Interaction of AgF+ with AgF4- (1:1) in AHF yields maroon Ag(II)Ag(III)F5. The latter interacts with AgF3 to yield Ag(II)Ag(III)2F8, which is identical with the product of the decomposition of AgF3 at 20-degrees-C in AHF and with the material previously described1,2 as AgF3. The magnetic susceptibility for Ag(II)Ag(III)2F8 obeys the Curie-Weiss law (4-280 K) with theta = -4.2 (5)-degrees and mu-eff = 1.924 (3)-mu-B.
    DOI:
    10.1021/ja00011a021
  • 作为产物:
    描述:
    五氟化磷 以 further solvent(s) 为溶剂, 生成 silver(III) fluoride
    参考文献:
    名称:
    Silver trifluoride: preparation, crystal structure, some properties, and comparison with AuF3
    摘要:
    Red, diamagnetic AgF3 is precipitated from anhydrous hydrogen fluoride (AHF) solutions of AgF4- salts by addition of fluoro acids (L) such as BF3, PF5, or AsF5: AgF4- + L --> AgF3 + LF-. With additional AsF5, silver(III) is reduced: AgF3 + AsF5 --> AgFAsF6 + 1/2 F2. Such reduction does not occur with BF3, and the latter acid is therefore preferred for the preparation of stoichiometric AgF3. AgF3 is thermodynamically unstable and, in contact with AHF, at approximately 20-degrees-C, loses F2 in less than 19 h according to the equation 3AgF3 --> Ag3F8 + 1/2F2. The trifluoride is isostructural with AuF3. To provide for meaningful comparisons, the structure of AuF3 was redetermined. AgF3 and AuF3 were successfully refined in space group P6(1)22-D62 (No. 178) by using the Rietveld method from time-of-flight neutron powder diffraction data from 100-mg samples contained in 2-mm capillary tubes. The 7762 observations for AgF3 yielded a = 5.0782 (2) angstrom, c = 15.4524 (8) angstrom, and V = 345.10 (2) angstrom-3, the reliability parameters for the structure being R(wp) = 6.21 and R(p) = 3.83%. From the 7646 observations for AuF3, a = 5.1508 (1) angstrom, c = 16.2637 (7) angstrom, V = 373.68 (2) angstrom-3, and R(wp) = 11.21 and R(p) = 7.58%. The silver or gold atom lies at the center of an elongated octahedron with two Ag-F(1) = 1.990 (3) angstrom, two Au-F(1) = 1.998 (2) angstrom, two Ag-F(2) = 1.863 (4) angstrom, and two Au-F(2) = 1.868 (3) angstrom, the approximately square, isodimensional AF4 units being joined by symmetrical mu-fluoro bridges (two F(1) in cis relationship in the AF4 unit) to form the 6(1) (or 6(5)) helical chains where Ag-F(1)-Ag = 123.2 (2)-degrees and Au-F(1)-Au = 119.3 (2)-degrees. The approximately 5-angstrom-3 smaller formula unit volume of AgF3 compared with AuF3 and the and the shorter z axis interatomic distance (Ag-F = 2.540 (4), Au-F = 2.756 (8) angstrom) are in accord with the tighter binding of the Ag(III) d-orbital electrons evident in the strong oxidizing properties of Ag(III). Interaction of AgF+ with AgF4- (1:1) in AHF yields maroon Ag(II)Ag(III)F5. The latter interacts with AgF3 to yield Ag(II)Ag(III)2F8, which is identical with the product of the decomposition of AgF3 at 20-degrees-C in AHF and with the material previously described1,2 as AgF3. The magnetic susceptibility for Ag(II)Ag(III)2F8 obeys the Curie-Weiss law (4-280 K) with theta = -4.2 (5)-degrees and mu-eff = 1.924 (3)-mu-B.
    DOI:
    10.1021/ja00011a021
点击查看最新优质反应信息

文献信息

  • Disproportionation of Ag(II) to Ag(I) and Ag(III) in Fluoride Systems and Syntheses and Structures of (AgF<sup>+</sup>)<sub>2</sub>AgF<sub>4</sub><sup>-</sup>MF<sub>6</sub><sup>-</sup> Salts (M = As, Sb, Pt, Au, Ru)
    作者:Ciping Shen、Boris Žemva、George M. Lucier、Oliver Graudejus、John A. Allman、Neil Bartlett
    DOI:10.1021/ic9905603
    日期:1999.10.1
    Interaction of Ag(+) salts in anhydrous liquid hydrogen fluoride, aHF, with AgF(4)(-) salts gives amorphous red-brown diamagnetic Ag(I)Ag(III)F(4), which transforms exothermally to brown, paramagnetic, microcrystalline Ag(II)F(2) below 0 degrees C. Ag(I)Au(III)F(4) prepared from Ag(+) and AuF(4)(-) in aHF has a tetragonal unit cell and a KBrF(4) type lattice, with a = 5.788(1) Å, c = 10.806(2) Å, and
    Ag(+)盐在无水液态氟化氢aHF中与AgF(4)(-)盐的相互作用产生无定形的红棕色抗磁性Ag(I)Ag(III)F(4),其放热转变为棕色,顺磁性,低于0摄氏度的微晶Ag(II)F(2)。由aHF中的Ag(+)和AuF(4)(-)制备的Ag(I)Au(III)F(4)具有四方晶胞和KBrF(4)型晶格,a = 5.788(1)Å,c = 10.806(2)Å,Z =4。蓝绿色Ag(II)FAsF(6)在aHF中不成比例(在没有F( -)受体)至无色Ag(I)AsF(6)和黑色假三氟化物,(Ag(II)F(+))(2)Ag(III)F(4)(-)AsF(6)(-) 。后者和其他(AgF)(2)AgF(4)MF(6)盐也是通过aF中的F(2)或O(2)溶液中的AgF(2)或AgF(+)盐的氧化而生成的。 (+)MF(6)(-)盐(M = As,Sb,Pt,Au,Ru)。(AgF)(2)Ag
  • A general method for the synthesis of polymeric binary flurides exemplified by AgF3, NiF4, RuF4, and OsF4
    作者:Boris Zemva、Karel Lutar、Adolf Jesih、William J. Casteel、Neil Bartlett
    DOI:10.1039/c39890000346
    日期:——
    their anion relatives in anhydrous hydrogen fluoride solution by strong fluoride ion acceptors such as AsF5 provides a general approach to the synthesis of polymeric binary fluorides and is particularly advantageous in the synthesis of highest-oxidation-state transition metal polymeric fluorides.
    通过强氟化物离子受体(例如AsF 5)从无水氟化氢溶液中的阴离子亲和物中捕获氟离子,为合成聚合二元氟化物提供了一种通用方法,在合成最高氧化态过渡金属聚合氟化物中特别有利。
  • Kiselev, Yu. M.; Popov, A. I.; Timakov, A. A., Russian Journal of Inorganic Chemistry, 1988, vol. 33, p. 708 - 710
    作者:Kiselev, Yu. M.、Popov, A. I.、Timakov, A. A.、Bukharin, K. V.、Sukhoverkhov, V. F.
    DOI:——
    日期:——
  • Bougon; Huy, T. Bui; Lance, Inorganic Chemistry, 1984, vol. 23, # 22, p. 3667 - 3668
    作者:Bougon、Huy, T. Bui、Lance、Abazli
    DOI:——
    日期:——
  • Kiselev, Yu. M.; Popov, A. I.; Bukharin, K. V., Russian Journal of Inorganic Chemistry, 1988, vol. 33, p. 1852 - 1853
    作者:Kiselev, Yu. M.、Popov, A. I.、Bukharin, K. V.、Timakov, A. A.、Korobov, M. V.
    DOI:——
    日期:——
查看更多