of sulfur, selenium and tellurium atoms into the Ga—Ga bond. By the oxidation of the gallium atoms products resulted which have angled Ga—S—Ga- (3), Ga—Se—Ga- (4) and Ga—Te—Ga units (5) in their molecular cores. In all cases, the carboxylato ligands remain in their bridging positions between two gallium atoms. The tellurium compound 5 shows a phase transition in the solid state, which was investigated
Die Dialkyldigallium(II)-Verbindung R2Ga2(μ-OOCCH3)22 [R = CH(SiMe3)2] enthalt eine kurze Ga-Ga-Einfachbindung,die durch zwei Acetatliganden uberbruckt wird。Durch die chelatartige Koordination der Carboxylato-Gruppen sind die Galliumatome mit einer Koordinationszahl von vier koordinativ gesattigt。Die Umsetzung von 2 mit Chalkogenatom-Donoren wie Propylensulfid, Triethylphosphoniumselenid und -tellurid
Ligand Control of Manganese Telluride Molecular Cluster Core Nuclearity
作者:Bonnie Choi、Daniel W. Paley、Theo Siegrist、Michael L. Steigerwald、Xavier Roy
DOI:10.1021/acs.inorgchem.5b01020
日期:2015.9.8
family of manganese telluride molecularclusters whose charge-neutral cores are passivated by two-electron donor ligands. We describe three different core structures: a cubane-type Mn4Te4, a prismane Mn6Te6, and a dicubane Mn8Te8. We use various trialkylphosphines and N-heterocyclic carbenes (NHCs) as surface ligands and demonstrate that the formation of the different cluster core structures is controlled
我们报告了锰碲化物分子簇家族的合成,结构多样性和化学行为,其电荷中性核心被两电子供体配体钝化。我们描述了三种不同的核心结构:古巴型Mn 4 Te 4,三氮烷Mn 6 Te 6和二茂锰Mn 8 Te 8。我们使用各种三烷基膦和N-杂环卡宾(NHCs)作为表面配体,并证明不同簇核心结构的形成受配体的选择控制:庞大的配体,如P i Pr 3,PCy 3或i Pr 2 NHC(我镨2 NHC = 1,3-二异丙基-4,5-二甲基咪唑烷-2-亚基)形成立方烷型芯,而较小的PME 3产生棱晶烷核。中等尺寸的PEt 3既可以生产古巴也可以生产三棱烷。这些碲化锰分子簇不稳定,并且封端膦可以被更强的配体取代,而簇的内部核心结构则保持完整。结构多样性,配体的多功能性和不稳定性之间的相互作用使这些簇潜在地成为组装较大的聚集体和扩展结构的有用构建基块。我们展示了这些固相反应的最简单原型:两个Mn 4 Te 4(i
Reaction Modes of a Tetragermabutadiene: Cycloadditions versus Ge−Ge Bond Cleavages<sup>1</sup>
with 2-methoxyphenyl isocyanide one Ge−Ge doublebond is cleaved to give the 4(1H)-trigermatimine ring system with an endocyclic Ge−Ge doublebond and the known tetrakis(2,4,6-triisopropylphenyl)digermene (10). All new compounds were characterized by X-ray crystallography. Redetermination of the structure of 10 revealed two independent molecules with GeGe bond lengths of 2.2894(6) and 2.2635(14) Å, respectively
在Et 3 P存在下用硒处理六(2,4,6-三异丙基苯基)tetragermabuta-1,3-diene(2)可以提供具有内环Ge-Ge双键的selenatetragermacyclopentene衍生物。2与少量水反应生成类似于THF的草酸酯-germamacyclopentane。2与Et 3 PTe的反应通过裂解所有Ge-Ge键进行,以产生1,2,4,5-tetratellura-3,6-digermacyclocyclic衍生物以及少量的“双层”化合物R 4 Ge 4 Te 6,R = 2,4,6- i Pr 3 C 6 H 2,以及telluradigermirane。在2与2-甲氧基苯基异氰化物的反应中,一个Ge-Ge双键被裂解,得到带有内环Ge-Ge双键和已知的四(2,4,6-三异丙基苯基)的4(1 H)-trigermatimine环系统digermene(10)。所有新
The First Phosphine-Catalyzed Insertion of Tellurium into Sn−Sn and Pb−Pb Bonds: A Simple and Efficient Route to R<sub>3</sub>MTeMR<sub>3</sub> (M = Sn, Pb)
作者:Li-Biao Han、Farzad Mirzaei、Masato Tanaka
DOI:10.1021/om990728s
日期:2000.3.6
elemental tellurium efficiently inserts into Sn−Sn and Pb−Pb bonds under mild conditions to give the corresponding tellurides R3MTeMR3 (M = Sn, Pb) in quantitative yield. Mechanistic study shows that first a phosphine telluride R‘3PTe is formed via the reaction of R‘3P with tellurium, which subsequently reacts with (R3M)2 to produce (R3M)2Te and concomitantly regenerates R‘3P to restart another cycle
Reactions of [Nb2(µ-S2)2(dtc)4] 1 (dtc = diethyldithiocarbamate, S2CNEt2) with chalcogen-transfer reagents PEt3Y (Y = Se or Te) were investigated. With PEt3Se, fully substituted [Nb2(µ-Se2)2(dtc)4] 2 forms if a catalytic amount of free PEt3 is present. However PEt3Te gives [Nb2(S)(Te2)(dtc)4] 3 which has a new core with two different chalcogens acting as bridges. The structures of both 2 and 3 were determined by X-ray analysis [2: Nb–Nb 2.974(2), Se–Se 2.303(2). 3: Nb–Nb 2.920(4), Te–Te 2.648(3) Å]. Electrochemistry of 2 and 3 was studied and a reversible one-electron oxidation was found for 2, giving a blue ESR-active (19-plet, g = 2.0489, A = 52.5 G) species [Nb2(µ-Se2)2(dtc)4]+ at 638 mV vs. NHE. By contrast in the reaction of [Nb2(µ-S2)2(acac)4] 4 (Hacac = acetylacetone) with PEt3Te only the sulfur abstraction product [Nb2(µ-S)2(acac)4] 5 formed, which could be more directly prepared from 4 and PEt3. Crystal structures of 4 and 5 were determined.