摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-chloro-6-(3-methoxyphenyl)furo[2,3-d]pyrimidine | 1446023-12-6

中文名称
——
中文别名
——
英文名称
4-chloro-6-(3-methoxyphenyl)furo[2,3-d]pyrimidine
英文别名
4-Chloro-6-(3-methoxyphenyl)furo[2,3-d]pyrimidine
4-chloro-6-(3-methoxyphenyl)furo[2,3-d]pyrimidine化学式
CAS
1446023-12-6
化学式
C13H9ClN2O2
mdl
——
分子量
260.68
InChiKey
VRODOIJMXOQEJV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    18
  • 可旋转键数:
    2
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.08
  • 拓扑面积:
    48.2
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Optimization of Ligand and Lipophilic Efficiency To Identify an in Vivo Active Furano-Pyrimidine Aurora Kinase Inhibitor
    摘要:
    Ligand efficiency (LE) and lipophilic efficiency (LipE) are two important indicators of "drug-likeness", which are dependent on the molecules activity and physicochemical properties. We recently reported a furano-pyrimidine Aurora kinase inhibitor 4 (LE = 0.25; LipE = 1.75), with potent activity in vitro; however, 4 was inactive in vivo. On the basis of insights obtained from the X-ray co-crystal structure of the lead 4, various solubilizing functional groups were introduced to optimize both the activity and physicochemical properties. Emphasis was placed on identifying potential leads with improved activity as well as better LE and LipE by exercising tight control over the molecular weight and lipophilicity of the molecules. Rational optimization has led to the identification of Aurora kinase inhibitor 27 (IBPR001; LE = 0.26; LipE = 4.78), with improved in vitro potency and physicochemical properties, resulting in an in vivo active (HCT-116 colon cancer xenograft mouse model) anticancer agent.
    DOI:
    10.1021/jm4006059
  • 作为产物:
    参考文献:
    名称:
    Chiral 6-aryl-furo[2,3-d]pyrimidin-4-amines as EGFR inhibitors
    摘要:
    Epidermal growth factor receptor inhibitors are of importance in cancer therapy and possibly in the management of pain. Herein, we report a structure-activity relationship study with 29 new 6-aryl-furo [2,3-d]pyrimidin-4-amines, involving modification of the 4-amino group and 6-aryl function. The EGFR activity was especially dependent on having a chiral 4-benzylamino group with correct stereochemistry. Molecular dynamics indicate this to be due to favourable cation-pi interactions. The most active inhibitor identified, equipotent to Erlotinib, was substituted with (R)-1-phenylethylamine at C-4 and a N-1, N-1-dimethyl-1,2-diamine group in para position of the 6-aryl moiety. These new furopyrimidines had a different off-target kinase profile when compared to Erlotinib, and also possessed high activity towards Ba/F3 EGFR(L858R) reporter cells. Further, comparing the EGFR data of the furo[2,3-d]pyrimidin-4-amines with that of the corresponding thieno- and pyrrolopyrimidines concludes the furopyrimidine scaffold to be highly useful for development of new epidermal growth factor receptor antagonists. (C) 2016 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2016.04.054
点击查看最新优质反应信息

文献信息

  • Chiral 6-aryl-furo[2,3-d]pyrimidin-4-amines as EGFR inhibitors
    作者:Jin Han、Svein Jacob Kaspersen、Sondre Nervik、Kristin G. Nørsett、Eirik Sundby、Bård Helge Hoff
    DOI:10.1016/j.ejmech.2016.04.054
    日期:2016.8
    Epidermal growth factor receptor inhibitors are of importance in cancer therapy and possibly in the management of pain. Herein, we report a structure-activity relationship study with 29 new 6-aryl-furo [2,3-d]pyrimidin-4-amines, involving modification of the 4-amino group and 6-aryl function. The EGFR activity was especially dependent on having a chiral 4-benzylamino group with correct stereochemistry. Molecular dynamics indicate this to be due to favourable cation-pi interactions. The most active inhibitor identified, equipotent to Erlotinib, was substituted with (R)-1-phenylethylamine at C-4 and a N-1, N-1-dimethyl-1,2-diamine group in para position of the 6-aryl moiety. These new furopyrimidines had a different off-target kinase profile when compared to Erlotinib, and also possessed high activity towards Ba/F3 EGFR(L858R) reporter cells. Further, comparing the EGFR data of the furo[2,3-d]pyrimidin-4-amines with that of the corresponding thieno- and pyrrolopyrimidines concludes the furopyrimidine scaffold to be highly useful for development of new epidermal growth factor receptor antagonists. (C) 2016 Elsevier Masson SAS. All rights reserved.
  • Optimization of Ligand and Lipophilic Efficiency To Identify an in Vivo Active Furano-Pyrimidine Aurora Kinase Inhibitor
    作者:Hui-Yi Shiao、Mohane Selvaraj Coumar、Chun-Wei Chang、Yi-Yu Ke、Ya-Hui Chi、Chang-Ying Chu、Hsu-Yi Sun、Chun-Hwa Chen、Wen-Hsing Lin、Ka-Shu Fung、Po-Chu Kuo、Chin-Ting Huang、Kai-Yen Chang、Cheng-Tai Lu、John T. A. Hsu、Chiung-Tong Chen、Weir-Torn Jiaang、Yu-Sheng Chao、Hsing-Pang Hsieh
    DOI:10.1021/jm4006059
    日期:2013.7.11
    Ligand efficiency (LE) and lipophilic efficiency (LipE) are two important indicators of "drug-likeness", which are dependent on the molecules activity and physicochemical properties. We recently reported a furano-pyrimidine Aurora kinase inhibitor 4 (LE = 0.25; LipE = 1.75), with potent activity in vitro; however, 4 was inactive in vivo. On the basis of insights obtained from the X-ray co-crystal structure of the lead 4, various solubilizing functional groups were introduced to optimize both the activity and physicochemical properties. Emphasis was placed on identifying potential leads with improved activity as well as better LE and LipE by exercising tight control over the molecular weight and lipophilicity of the molecules. Rational optimization has led to the identification of Aurora kinase inhibitor 27 (IBPR001; LE = 0.26; LipE = 4.78), with improved in vitro potency and physicochemical properties, resulting in an in vivo active (HCT-116 colon cancer xenograft mouse model) anticancer agent.
查看更多

同类化合物

呋喃并[2,3-d]嘧啶-4(1H)-酮 呋喃并[2,3-d]嘧啶-2(3H)-酮 呋喃并[2,3-d]嘧啶 6-苯基呋喃并[2,3-D]嘧啶-4-胺 6-甲基呋喃并[2,3-d]嘧啶-4-胺 6-甲基呋喃并[2,3-d]嘧啶-4(3H)-酮 6-(4-甲氧基苯基)呋喃并[2,3-d]嘧啶-4-胺 6-(4-甲氧基苯基)-5-(3-吡啶)-呋喃并[2,3-d]嘧啶-4-胺 6-(4-甲基苯基)-呋喃并[2,3-d]嘧啶-4-胺 6-(4-溴-苯基)-4-氯-呋喃并[2,3-d]嘧啶 6-(4-氯苯基)-呋喃并[2,3-d]嘧啶-4-胺 6-(3-溴-苯基)-4-氯-呋喃并[2,3-d]嘧啶 6-(3-吡啶)-呋喃并[2,3-d]嘧啶-4-胺 5-甲基呋喃并[2,3-d]嘧啶-4-胺 5-溴呋喃并[2,3-D]嘧啶-4-胺 5-氯甲基呋喃并[2,3-d]嘧啶-2,4-二胺 5,6-二甲基呋喃[2,3-d]嘧啶-4-胺 4-氯呋喃[2,3-D]嘧啶 4-氯-6-甲基-呋喃并[2,3-d]嘧啶 4-氨基呋喃并[2,3-D]嘧啶 4,6-二甲基呋喃并[2,3-d]嘧啶 4,6-二甲基呋喃并[2,3-D]嘧啶-2-胺 3-(2-脱氧-beta-D-赤式-呋喃戊糖基)-6-甲基呋喃并[2,3-d]嘧啶-2(3H)-酮 2-甲基硫代呋喃并[2,3-d]嘧啶-6-甲醇 2,4-二氯呋喃并[2,3-d]嘧啶 2,4-二氯-5-甲基呋喃并[2,3-d]嘧啶 5,6-dimethylfuro<2,3-d>pyrimidine-4-carbonitrile 6-(3-aminophenyl)-N-[(1R)-1-phenylethyl]furo[2,3-d]pyrimidin-4-amine 6-(3-aminophenyl)-N-(3-chlorophenyl)furo[2,3-d]pyrimidin-4-amine 2-{[6-(3-aminophenyl)furo[2,3-d]pyrimidin-4-yl]amino}-4-chlorophenol 6-(3-aminophenyl)-N-(4-chloro-2-fluorophenyl)-furo[2,3-d]pyrimidin-4-amine 6-(3-aminophenyl)-N-(3,5-dichlorophenyl)furo[2,3-d]pyrimidin-4-amine 5-{[6-(3-aminophenyl)furo[2,3-d]pyrimidin-4-yl]amino}-2-methylphenol 1-(6-[4-(2-dimethylamino-ethoxy)-phenyl]-5-methyl-2-thiophene-2-yl-furo[2,3-d]pyrimidin-4-ylamino)-3-methyl-pyrrole-2,5-dione (R)-4-(4-((1-phenylethyl)amino)furo[2,3-d]pyrimidin-6-yl)benzonitrile pyrrolidine-1-carboxylic [6-(4-methoxy-phenyl)-furo[2,3-d]pyrimidin-4-yl]-amide N3-[(1-benzyl-1,2,3-triazol-4-yl)methyl]-6-(hex-1-yl)furo[2,3-d]pyrimidine-2-one N3-{[1-(4-chlorophenyl)-1,2,3-triazol-4-yl]methyl}-6-(hex-1-yl)-5-(oct-1-yn-1-yl)furo[2,3-d]pyrimidine-2-one N3-{[1-(2-fluorophenyl)-1,2,3-triazol-4-yl]methyl}-(6-hex-1-yl)furo[2,3-d]pyrimidine-2-one 6-pentyl-2,3-dihydrofuro[2,3-d]pyrimidin-2-one 2-[(5,6-di-(2-furyl)-furo[2,3-d]pyrimidin-4-yl)aminoethoxy]ethanol 6-(4-n-pentylphenyl)-2,3-dihydrofuro[2,3-d]pyrimidin-2-one 2-[(5,6-di-(2-furyl)-furo[2,3-d]pyrimidin-4-yl)amino]butan-1-ol 4-[(5,6-di-(2-furyl)-furo[2,3-d]pyrimidin-4-yl)amino]butan-1-ol 4-chloro-5,6-dimethylfuro[2,3-d]pyrimidine 3-butyl-6-(hexylsulfanylmethyl)furo[2,3-d]pyrimidin-2(3H)-one 3-dodecyl-6-(hexylsulfanylmethyl)furo[2,3-d]pyrimidin-2(3H)-one 6-(hexylsulfanylmethyl)-3-octylfuro[2,3-d]pyrimidin-2(3H)-one 3-decyl-6-(hexylsulfanylmethyl)furo[2,3-d]pyrimidin-2(3H)-one 6-decyl-2-propoxyfuro[2,3-d]pyrimidine