Cu 4 O 3的亚稳性长期以来阻碍了具有明显结晶度的大块样品的合成制备。缺少合适的样品阻碍了对Cu 4 O 3磁性和调节其性能的详细理解。而Cu 4 O 3最近发现它在溶剂热反应中形成,结果是不可预测的,并且晶体很小。我们使用密封的熔融石英管开发了一种新的,更均匀的合成技术。对该反应产生的固相和液相的询问,使含铜相的动力学演化以及不同沉淀产物之间的微观结构相关性得到了更多的了解。我们发现,中间相Cu 2(NO 3)(OH)3直接转化为Cu 4 O 3是原位触发二甲基甲酰胺(DMF)的可能结果减少。鉴于我们方法的可靠性提高,最佳还原环境应该更容易实现,并且仍在研究中。我们通过X射线衍射,拉曼显微镜和SQUID磁力分析验证了Cu 4 O 3的形成。
Synthesis and spectroscopic identification of nickel and cobalt layered hydroxides and hydroxynitrates
作者:Samuel P. Wallbridge、Kurt Lawson、Amy E. Catling、Caroline A. Kirk、Sandra E. Dann
DOI:10.1039/d2dt03166c
日期:——
As well as the brucite type β-M(OH)2 and the hydrotalcite-like [M(OH)2−x(H2O)x]x+ alpha-phases (where M = Ni, Co), two different hydroxynitrate phases were isolated with the generic formula M(OH)2−x(NO3)x with x = 0.67 and 1.0 (where M = Ni, Co). The reduction of symmetry of the nitrate anion from D3h to C2v allows the alpha-phases to be distinguished from the two different layered hydroxynitrate phases
已经研究了通过各种溶液和固态合成方法形成不同的镍和钴层状氢氧化物相。最初,改进了制备方法以从金属 ( II ) 硝酸盐六水合物起始材料生成单相产物,然后通过粉末 X 射线衍射、振动光谱和热重分析对其进行表征。以及水镁石型 β-M(OH) 2和类水滑石 [M(OH) 2− x (H 2 O) x ] x + α-相(其中 M = Ni, Co),两种不同的羟基硝酸盐用通式 M(OH) 2− x (NO 3) x其中x = 0.67 和 1.0(其中 M = Ni、Co)。硝酸根阴离子的对称性从D 3h减少到C 2v允许通过红外和拉曼光谱通过失去对称性和伴随的简并带分裂将 α 相与两个不同的层状羟基硝酸盐相区分开来。对称的 N-O 拉伸使两个羟基硝酸盐相能够通过ca 处的尖锐吸收带相互区分。1000 cm -1 ( x = 0.67) 和ca。1050 厘米−1 ( x= 1.0)。这些相的热
A very facile strategy for the synthesis of ultrathin CuO nanorods towards non-enzymatic glucose sensing
作者:Xufeng Gou、Shaodong Sun、Qing Yang、Pengju Li、Shuhua Liang、Xiaojing Zhang、Zhimao Yang
DOI:10.1039/c7nj04717g
日期:——
Ultrathin CuO nanorods for non-enzymatic glucose sensing have been readily synthesized by simply mixing Cu2+/OH−/ethanol with water at high temperature.
Capturing Phase Evolution during Solvothermal Synthesis of Metastable Cu<sub>4</sub>O<sub>3</sub>
作者:Zhelong Jiang、Shiliang Tian、Shuqi Lai、Rebecca D. McAuliffe、Steven P. Rogers、Moonsub Shim、Daniel P. Shoemaker
DOI:10.1021/acs.chemmater.6b00421
日期:2016.5.10
The metastability of Cu4O3 has long hindered the synthetic preparation of bulk samples with substantial crystallinity. The lack of suitable samples has thwarted the detailed understanding of the magnetic properties of Cu4O3 and the ability to tune its properties. While Cu4O3 was recently shown to form in solvothermal reactions, the results are unpredictable, and the crystals are small. We developed
Cu 4 O 3的亚稳性长期以来阻碍了具有明显结晶度的大块样品的合成制备。缺少合适的样品阻碍了对Cu 4 O 3磁性和调节其性能的详细理解。而Cu 4 O 3最近发现它在溶剂热反应中形成,结果是不可预测的,并且晶体很小。我们使用密封的熔融石英管开发了一种新的,更均匀的合成技术。对该反应产生的固相和液相的询问,使含铜相的动力学演化以及不同沉淀产物之间的微观结构相关性得到了更多的了解。我们发现,中间相Cu 2(NO 3)(OH)3直接转化为Cu 4 O 3是原位触发二甲基甲酰胺(DMF)的可能结果减少。鉴于我们方法的可靠性提高,最佳还原环境应该更容易实现,并且仍在研究中。我们通过X射线衍射,拉曼显微镜和SQUID磁力分析验证了Cu 4 O 3的形成。
Electrochemical Behavior of Morphology-Controlled Copper (II) Hydroxide Nitrate Nanostructures
in energy conversion and storage devices. In this study, we report various methods of synthesis of nanostructured copper (II) hydroxide nitrate (Cu2(OH)3NO3) with a layered hydroxide salt (LHS) structure using various synthesis methods and investigate the correlation between nanostructure, morphology, and their pseudocapacitive electrochemical behavior. The variations in nanostructure size and morphology
在能量转换和存储设备中使用电活性材料时,纳米结构控制是一个重要问题。在这项研究中,我们报告了使用各种合成方法合成具有层状氢氧化物盐 (LHS) 结构的纳米结构氢氧化硝酸铜 (II) (Cu 2 (OH) 3 NO 3 ) 的各种方法,并研究了纳米结构、形态、及其赝电容电化学行为。通过结合 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 全面探索纳米结构尺寸和形态的变化,同时使用循环伏安法表征电化学活性。我们证明了 Cu 2 (OH) 3 NO 3–LHS 纳米结构亚微米颗粒由含有 88% 铜阳离子的碱性沉淀产生,可以通过双电子氧化还原过程循环。不幸的是,由于结构转变和随后的电化学研磨的发生,电活性从第一个循环开始迅速下降。然而,通过超声波和微波合成获得的样品是 LHS 材料的两种原始合成方法,由纳米级结晶域聚集在微米级颗粒中形成,代表了容量和循环性之间的良好折衷。此外,通过对重复循
Understanding copper sulfide formation from layered template and their use as power electrode materials in aqueous electrolyte
Coppersulfide has received increasing attention as an electrodematerial in past decades. In this study, we report the synthesis of coppersulfide with layeredcopper hydroxide salt (LHS) (Cu(OH)NO) precursors using different protocols. X-ray diffraction suggests the presence of numerous non-stoichiometric phases (CuS) and not a pure covellite phase and SEM images show particles with flower-like shape