reaction between Co2(CO)8 and CoX2 (X = C1, I, O2CC2H5) in THF involves in a P(CO)-dependent disproportionation of the neutral carbonyl: 32Co2(CO)8 + CoX2 ⇆ 2[Co(CO)4]− + 2[CoX]+ + 4CO For X− = I−, a stable CoII, Co−I homonuclear ion-pair (HNIP) is the only product at room temperature, while for X− = C1− and O2CC2H5− is also formed. For X = C1− or O2CC2H5− the solutions obtained activate dihydrogen under
Co 2(CO)8和CoX 2(X = C1,I,O 2 CC 2 H 5)在THF中的反应涉及中性羰基的P(CO)依赖性歧化:32Co 2(CO)8 + COX 2 ⇆2 [Co(CO)4 ] - + 2 [COX] + + 4CO对于X - = I - ,稳定的钴II,钴-I同核离子对(HNIP)在室温下是唯一的产品,而对于X - = C1 -和O 2 CC2 ħ 5 -也被形成。对于X = C1 -或O的2 CC 2 H ^ 5 -将得到的溶液激活异常温和的条件下二氢; 高度极化的Co 2+阳离子被[Co(CO)4 ] -和X配体所稳定,被认为是该活化过程中的活性物质。该图还说明了少量吡啶对由Co 2(CO)8和甲苯中的二氢形成HCo(CO)4的催化作用。
Rotational and hyperfine analysis of the near infrared 3Φ4–X 3Φ4 transitions of CoCl and CoI
作者:Ally L. Wong、W. S. Tam、A. S-C. Cheung
DOI:10.1063/1.1589476
日期:2003.8.8
with I=7/2 was resolved and analyzed. Accurate rotational and hyperfine parameters for the [10.3] 3Φ4 and X 3Φ4 states of CoCl and [11.0] 3Φ4 and X 3Φ4 states of CoI have been obtained. Comparison of Fermi contact parameters, bF, for the upper states indicated that the observed [10.3] 3Φ4–X3Φ4transition of CoCl and [11.0] 3Φ4–X3Φ4transition of CoI have arisen from the promotion of an electron from
已经使用激光汽化反应自由射流膨胀和近红外区域的激光诱导荧光光谱研究了一氯化钴和一碘化钴的电子跃迁。观察到的转变已被确定为 CoCl 的 [10.3] 3Φ4–X 3Φ4 转变和 CoI 的 [11.0] 3Φ4–X 3Φ4 转变。解析分析了由I=7/2的钴核产生的磁性超精细结构。已经获得了 CoCl 的 [10.3] 3Φ4 和 X 3Φ4 状态以及 CoI 的 [11.0] 3Φ4 和 X 3Φ4 状态的准确旋转和超精细参数。比较高态的费米接触参数 bF 表明观察到的 CoCl 和 [11] 的 [10.3] 3Φ4–X 3Φ4 跃迁。0] CoI 的 3Φ4–X 3Φ4 跃迁是由于电子从键合 σ 轨道到轻微反键 σ 轨道的促进而产生的。还比较和讨论了观察到的一卤化钴和氢化物的低位 3Φ 态。
Successive magnetic phase transitions of a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CoCl</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mo>−</mml:mo><mml:mi mathvariant="normal">F</mml:mi><mml:mi mathvariant="normal">e</mml:mi><mml:mi mathvariant="normal">C</mml:mi><mml:mi mathvariant="normal">l</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>graphite bi-intercalation compound
作者:Masatsugu Suzuki、Itsuko S. Suzuki
DOI:10.1103/physrevb.59.4221
日期:——
CoCl2-FeCl3 graphite bi-intercalation compound (GBIC) has a c-axis stacking sequence of -G-I-1-G-I-2-G-I-1-G-I-2-G- (G = graphite layer, I-1 = CoCl2 layer, and I-2 = FeCl3 layer). This compound undergoes four magnetic phase transitions at T-h(=16.4K), T-cu(=8.5-8.7 K), T-cl(=7.3-7.4 K), and T-SG (=4.7-5.9 K). The static and dynamic aspects of spin orderings in this compound have been studied employing the temperature, frequency, and field dependence of dispersion chi(aa)', and chi(cc)', and the absorption chi(aa)" and chi(cc)". A possible helical spin order occurring below T-h is due to the spin frustration effect arising from competing interplanar exchange interactions. Below T-cu two-dimensional (2D) ferromagnetic long-range order appears in each CoCl2 layer. Below T-cl these 2D ferromagnetic CoCl2 layers are antiferromagnetically stacked along the c axis, forming a three-dimensional (3D) antiferromagnetic phase. The spin-glass phase occurring in each FeCl3 layer below T-SG is due to the spin frustration effect arising from competing intraplanar exchange interactions between majority XY Fe3+ spins and minority Ising Fe2+ spins. The phase transitions near T-cu, T-cl, and T-SG are partially destroyed by random fields generated in FeCl3 layers and CoCl2 layers, respectively, through competing interplanar exchange interactions. [S0163-1829(99)00206-4].