摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-脱氧-1-(7,8-二甲基-2,4-二氧代-1,3,4,5-四氢苯并[g]蝶啶-10(2H)-基)-5-O-膦酰戊糖醇 | 5666-16-0

中文名称
1-脱氧-1-(7,8-二甲基-2,4-二氧代-1,3,4,5-四氢苯并[g]蝶啶-10(2H)-基)-5-O-膦酰戊糖醇
中文别名
3,3',4,5'-四溴联苯基
英文名称
flavin mononucleotide
英文别名
reduced flavin mononucleotide;FMN;FMNH2;Flavin-mononucleotid (red. Form);O5'-phosphono-1,5-dihydro-riboflavin;7,8-dimethyl-4-oxo-10-[(2S,3S,4R)-2,3,4-trihydroxy-5-phosphonooxypentyl]-3,5-dihydrobenzo[g]pteridin-5-ium-2-olate
1-脱氧-1-(7,8-二甲基-2,4-二氧代-1,3,4,5-四氢苯并[g]蝶啶-10(2H)-基)-5-O-膦酰戊糖醇化学式
CAS
5666-16-0
化学式
C17H23N4O9P
mdl
——
分子量
458.365
InChiKey
YTNIXZGTHTVJBW-SCRDCRAPSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 物理描述:
    Solid

计算性质

  • 辛醇/水分配系数(LogP):
    -2.3
  • 重原子数:
    31
  • 可旋转键数:
    7
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.41
  • 拓扑面积:
    201
  • 氢给体数:
    8
  • 氢受体数:
    11

SDS

SDS:1898490f54fedcfe61abd1b84b6aedd6
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-脱氧-1-(7,8-二甲基-2,4-二氧代-1,3,4,5-四氢苯并[g]蝶啶-10(2H)-基)-5-O-膦酰戊糖醇N-乙酰基卞基半胱氨酸氧气 、 alkylcysteine sulfoxide C−S monooxygenase CmoJ 作用下, 以 aq. buffer 为溶剂, 生成 FMN-N5-oxide
    参考文献:
    名称:
    烷基半胱氨酸亚砜 C-S 单加氧酶使用黄素依赖性 Pummerer 重排
    摘要:
    黄素酶用途广泛,参与多种反应的催化,包括含硫化合物代谢中的关键反应。 S-烷基半胱氨酸主要由亲电子解毒过程中产生的S-烷基谷胱甘肽降解形成。最近发现的 S-烷基半胱氨酸补救途径使用两种黄素酶(CmoO 和 CmoJ)使土壤细菌中的这种代谢物脱烷基化。 CmoO 催化立体定向磺化氧化,CmoJ 在未知机制的新反应中催化其中一个亚砜 C-S 键的断裂。在本文中,我们研究了 CmoJ 的机制。我们提供了消除碳负离子和自由基中间体的实验证据,并得出结论,该反应是通过前所未有的酶介导的修饰普默勒重排进行的。 CmoJ机制的阐明为含硫天然产物的黄酮酶学添加了新的基序,并展示了酶催化C-S键断裂的新策略。
    DOI:
    10.1021/jacs.3c03545
  • 作为产物:
    描述:
    2,6-蒽二酚 在 Pseudomonas aeruginosa methanesulfonate monooxygenase flavin reductase 、 还原型辅酶II(NADPH)四钠盐 作用下, 生成 1-脱氧-1-(7,8-二甲基-2,4-二氧代-1,3,4,5-四氢苯并[g]蝶啶-10(2H)-基)-5-O-膦酰戊糖醇
    参考文献:
    名称:
    不像π那样容易:插入残基不能解释两组分FMN还原酶中π螺旋的功能获得。
    摘要:
    位于两组分FMN依赖的还原酶的四聚体界面的π螺旋有助于从NADPH:FMN还原酶家族中的经典FMN结合的还原酶的结构差异。已经提出,链烷磺酸单加氧酶系统的SsuE FMN依赖性还原酶中的π-螺旋是通过在保守的α4-螺旋中插入Tyr残基产生的。产生了Tyr118的变体,并确定了它们的X射线晶体结构,以评估这些改变如何影响π螺旋的结构完整性。Y118A SsuEπ螺旋的结构被转换为α螺旋,类似于NADPH:FMN还原酶家族的FMN结合成员。尽管π-螺旋改变,但FMN结合区保持不变。反过来,Tyr118的缺失破坏了π-螺旋的二级结构特性,在螺旋4的中间产生了一个随机的螺旋区域。Y118A和Δ118SsuE SsuE变体均结晶为二聚体。MsuE FMN还原酶与甲磺酸盐的脱硫反应在结构上与SsuE类似,但π-螺旋含有一个His插入残基。交换每种酶的π-螺旋插入残基不会导致等效的动力学性质。基于结构的
    DOI:
    10.1002/pro.3504
  • 作为试剂:
    描述:
    2-(羟甲基)丙烯酸甲酯1-脱氧-1-(7,8-二甲基-2,4-二氧代-1,3,4,5-四氢苯并[g]蝶啶-10(2H)-基)-5-O-膦酰戊糖醇a-无水葡萄糖酯 、 glucose dehydrogenase from Thermoplasma acidophilum 、 old yellow enzyme 1 from Saccharomyces pastorianus 、 nicotinamide adenine dinucleotide phosphate 作用下, 以 aq. buffer 为溶剂, 反应 24.0h, 以90%的产率得到
    参考文献:
    名称:
    Cell-free protein engineering of Old Yellow Enzyme 1 from Saccharomyces pastorianus
    摘要:
    In protein engineering, cell-free transcription/translation of linear mutagenic DNA templates can tremendously accelerate and simplify the screening of enzyme variants. Using the RApid Parallel Protein EvaluatoR (RAPPER) protocol, we have evaluated the impact of amino acid substitutions and loop truncations on substrate specificity and stereoselectivity of Old Yellow Enzyme 1 from Saccharomyces pastorianus. Our study demonstrates the benefit of systematically assessing amino add variations including substrate profiling to explore sequence-function space. (C) 2016 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.tet.2016.01.007
点击查看最新优质反应信息

文献信息

  • <i>E. coli</i> Nickel‐Iron Hydrogenase 1 Catalyses Non‐native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene‐reductases**
    作者:Shiny Joseph Srinivasan、Sarah E. Cleary、Miguel A. Ramirez、Holly A. Reeve、Caroline E. Paul、Kylie A. Vincent
    DOI:10.1002/anie.202101186
    日期:2021.6.14
    A new activity for the [NiFe] uptake hydrogenase 1 of Escherichia coli (Hyd1) is presented. Direct reduction of biological flavin cofactors FMN and FAD is achieved using H2 as a simple, completely atom-economical reductant. The robust nature of Hyd1 is exploited for flavin reduction across a broad range of temperatures (25–70 °C) and extended reaction times. The utility of this system as a simple,
    展示了大肠杆菌 (Hyd1) 的 [NiFe] 摄取氢化酶 1 的新活性。使用H 2作为简单、完全原子经济的还原剂可实现生物黄素辅因子FMN 和FAD 的直接还原。Hyd1 的稳健特性可在较宽的温度范围 (25–70 °C) 和较长的反应时间下还原黄素。该系统作为简单、易于实施的 FMNH 2或 FADH 2再生系统的实用性通过向老黄酶“烯还原酶”提供还原黄素以支持不对称烯烃还原且转化率高达 100% 来证明。在黄素回收过程中记录了Hyd1 周转频率高达 20.4 min -1和总周转次数高达 20 200。
  • Catalytic reduction of redox-active co-factors and proteins by dihydrogen with sephadex supported platinum clusters as catalysts
    作者:Sumit Bhaduri、Krishna Sharma
    DOI:10.1039/cc9960000207
    日期:——
    The platinum carbonyl cluster [Pt15(CO)30]2–, anchored onto QAE-SEPHADEX anion exchanger, is an effective catalyst for the reduction of flavin co-factors, lipoamide dehydrogenase and CytCox.
    碳基簇 [Pt15(CO)30]2– 锚定在 QAE-SEPHADEX 阴离子交换剂上,是一种有效的催化剂,用于还原黄素辅因子、脂肪酰胺脱氢酶和细胞色素 c 氧化酶。
  • Donor–Acceptor Distance Sampling Enhances the Performance of “Better than Nature” Nicotinamide Coenzyme Biomimetics
    作者:Alexander Geddes、Caroline E. Paul、Sam Hay、Frank Hollmann、Nigel S. Scrutton
    DOI:10.1021/jacs.6b05625
    日期:2016.9.7
    (NCBs) is critical to enhancing the performance of nicotinamide coenzyme-dependent biocatalysts. Here the temperature dependence of kinetic isotope effects (KIEs) for hydride transfer between "better than nature" NCBs and several ene reductase biocatalysts is used to indicate transfer by quantum mechanical tunneling. A strong correlation between rate constants and temperature dependence of the KIE (ΔΔH(⧧))
    了解烟酰胺辅酶仿生学 (NCB) 的酶促氢化物转移机制对于提高烟酰胺辅酶依赖性生物催化剂的性能至关重要。在此,动力学同位素效应 (KIE) 对“优于自然”的 NCB 和几种烯还原酶生物催化剂之间的氢化物转移的温度依赖性用于指示通过量子力学隧道效应的转移。H/D 转移的速率常数和 KIE (ΔΔH(⧧)) 的温度依赖性之间的强相关性意味着与 NCB 的更快反应与增强的供体 - 受体距离采样相关。
  • Asymmetric <i>C</i>-Alkylation of Nitroalkanes <i>via</i> Enzymatic Photoredox Catalysis
    作者:Haigen Fu、Tianzhang Qiao、Jose M. Carceller、Samantha N. MacMillan、Todd K. Hyster
    DOI:10.1021/jacs.2c12197
    日期:2023.1.18
    Tertiary nitroalkanes and the corresponding α-tertiary amines represent important motifs in bioactive molecules and natural products. The C-alkylation of secondary nitroalkanes with electrophiles is a straightforward strategy for constructing tertiary nitroalkanes; however, controlling the stereoselectivity of this type of reaction remains challenging. Here, we report a highly chemo- and stereoselective
    叔硝基烷烃和相应的α-叔胺代表了生物活性分子和天然产物中的重要基序。仲硝基烷烃与亲电子试剂的C烷基化是构建叔硝基烷烃的简单策略;然而,控制此类反应的立体选择性仍然具有挑战性。在这里,我们报道了由工程黄素依赖性“烯”还原酶(ERED)催化的硝基烷烃与卤代烷的高度化学和立体选择性C烷基化。来自嗜土芽孢杆菌的老黄色酶的定向进化提供了三重突变体 GkOYE-G7,能够以高产率和对映选择性合成叔硝基烷烃。机理研究表明,底物和辅因子之间形成的酶模板电荷转移复合物的激发是自由基引发的原因。此外,还开发了一种单酶双机制级联反应,可以从简单的硝基烯烃制备叔硝基烷烃,突出了使用一种酶进行两种机制不同的反应的潜力。
查看更多

同类化合物

腺嘌呤黄素 核黄素磷酸钠 核黄素杂质B 核黄素5'-焦磷酸盐 核黄素4′,5′-二磷酸酯 [5-(6-氨基嘌呤-9-基)-4-羟基-3-膦酰氧基四氢呋喃-2-基]甲基[[5-(7,8-二甲基-2,4-二氧代苯并[g]蝶啶-10-基)-2,3,4-三羟基戊氧基]-羟基磷酰]磷酸氢酯 [5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基[[5-(7,8-二甲基-2,4-二氧代-6-硫氰酸基苯并[g]蝶啶-10-基)-2,3,4-三羟基戊氧基]-羟基磷酰]磷酸氢酯 [5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基[[5-(7,8-二甲基-2,4-二氧代-6-硫代-1H-苯并[g]蝶啶-10-基)-2,3,4-三羟基戊氧基]-羟基磷酰]磷酸氢酯 [5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基[[5-(6-叠氮基-7,8-二甲基-2,4-二氧代苯并[g]蝶啶-10-基)-2,3,4-三羟基戊氧基]-羟基磷酰]磷酸氢酯 [(2S,3R,4R)-5-(7,8-二甲基-2,4-二氧代苯并[g]蝶啶-10-基)-2,3,4-三羟基戊基]磷酸二氢酯 [(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基[[(2S,3R,4S)-5-(7,8-二甲基-2,4-二氧代苯并[g]蝶啶-10-基)-2,3,4-三羟基戊氧基]-羟基磷酰]磷酸氢酯 [(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基[[(2R,3S,4S)-5-(7,8-二甲基-2,4-二氧代-1,5-二氢苯并[g]蝶啶-10-基)-2,3,4-三羟基戊氧基]-羟基磷酰]磷酸氢酯 2,6-蒽二酚 1-脱氧-1-(7,8-二甲基-2,4-二氧代-1,3,4,5-四氢苯并[g]蝶啶-10(2H)-基)-5-O-膦酰戊糖醇 8-formyl-riboflavin-5′-phosphate riboflavin adenine dinucleotide riboflavin 5'-phosphate [[(2R,3S,4R,5R)-3,4-dihydroxy-5-(9H-imidazo[2,1-f]purin-6-ium-3-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl] [(2S,3R,4R)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate;chloride Riboflavin 5'-monophosphate sodium salt dihydrate Flavin adenine dinucleotide sodium salt 6-Hydroxy-fad Riboflavin 5a(2)-(trihydrogen diphosphate), 4a,5-dihydro-4a-hydroperoxy-, Pa(2)a5a(2)-ester with adenosine Lyxoflavin 5'-monophosphate Pharmakon1600-01505763 7,8-dimethyl-2,4-dioxo-10-[(2R,3S,4R)-2,3,4-trihydroxy-5-phosphonooxypentyl]benzo[g]pteridin-5-ium-5-sulfonic acid [(2R,3S,4R)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] dihydrogen phosphate N(5)-sulfo-FADH2 [[(2R,3S,4R,5R)-5-(6-amino-4,5-dihydropurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [[(2R,3S,4R,5S)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [5-(7,8-dimethyl-2,4-dioxo-1,5-dihydrobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [(2S,3R,4R)-5-(7,8-dimethyl-2,4-dioxo-1,5-dihydrobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] dihydrogen phosphate [5-(8-Cyano-7-methyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] dihydrogen phosphate [(3S)-1-[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl]-3-oxo-1,2,3lambda5-dioxaphosphiran-1-ium-3-yl] [(2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxo-1H-benzo[g]pteridin-10-ium-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [(2R,3S,4R)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] phosphate [[(2R,3R,4S,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3S,4R)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [[(2R,3R,4S,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3R,4R)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [[(2R,3R,4S,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [[(2R,3R,4S,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3R,4S)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [(E)-3-[10-[(2S,3S,4R)-5-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2,3,4-trihydroxypentyl]-7,8-dimethyl-2,4-dioxo-1H-benzo[g]pteridin-5-yl]prop-2-enylidene]-benzyl-methylazanium [(2R,3R,4S)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] phosphate [(2R,3R,4R)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] phosphate [(2R,3R,4S)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] dihydrogen phosphate [[(2S,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3R,4R)-5-[7,8-dimethyl-5-(2-methylpropanoyl)-2,4-dioxobenzo[g]pteridin-5-ium-10-yl]-2,3,4-trihydroxypentyl] hydrogen phosphate [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3S,4S)-5-[7,8-dimethyl-5-[(E)-3-[methyl-[(2R)-1-phenylpropan-2-yl]amino]prop-1-enyl]-2,4-dioxo-1H-benzo[g]pteridin-10-yl]-2,3,4-trihydroxypentyl] hydrogen phosphate [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3S,4S)-2,3,4-trihydroxy-5-[5-[3-[[(1R)-6-hydroxy-2,3-dihydro-1H-inden-1-yl]imino]propyl]-7,8-dimethyl-2,4-dioxo-1H-benzo[g]pteridin-10-yl]pentyl] hydrogen phosphate [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2S,3S,4S)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [[(2S,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3R,4R)-5-(7,8-dimethyl-2,4,6-trioxo-1H-benzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [(2R,3S,4S)-2,3,4-trihydroxy-5-(11,12,14,14-tetramethyl-3,5-dioxo-1,4,6,8-tetrazatetracyclo[7.7.1.02,7.013,17]heptadeca-2(7),9(17),10,12,15-pentaen-8-yl)pentyl] dihydrogen phosphate [(2R,3S,4S)-5-[7,8-dimethyl-5-(3-methylbutyl)-2,4-dioxo-1H-benzo[g]pteridin-10-yl]-2,3,4-trihydroxypentyl] dihydrogen phosphate [[(2S,3R,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2R,3R,4R)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentyl] hydrogen phosphate [[(2R,4S,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-[(2R,3S,4S)-5-(7,8-dimethyl-2,4-dioxobenzo[g]pteridin-10-yl)-2,3,4-trihydroxypentoxy]-oxophosphanium