氯化锂-6LI 、 magnesium chloride 以
neat (no solvent) 为溶剂,
生成
参考文献:
名称:
快速离子传导尖晶石型Li 2 MgCl 4,Li 2– x Cu x MgCl 4,Li 2– x Na x MgCl 4和Li 2 ZnCl 4的6 Li和7 Li MAS NMR研究
摘要:
6 Li和7 Li MAS NMR光谱,包括1D-EXSY(交换光谱)和快速离子导电Li 2 MgCl 4,Li 2– x Cu x MgCl 4,Li 2– x Na x MgCl 4和Li 2的反演恢复实验关于锂离子的动力学和局部结构,已经记录并讨论了ZnCl 4。反尖晶石型固溶体Li 2– x M I x MgCl 4的Li MAS NMR信号的化学位移,强度和半峰宽(M I = Cu,Na)和铜离子分别位于四面体位点和钠离子分别位于八面体位点和正常的尖晶石型锌化合物上,证实了低场信号分配给反尖晶石型Litet Li 2 MgCl 4和Naoct等人提出的向Lioct的高场信号。(2000)。与尖晶石型Li 2–2 x Mg 1+ x Cl 4固溶体具有空位和Mg 2+离子,Cu +和Na +聚集的相反离子分别随机分布在四面体和八面体位点。活化能由于锂离子在由NMR实验获得的反尖晶石型氯化物的各种动态过程是Ë一个=
polycrystalline samples at room temperature. Furthermore, the (1)H-hf and (6)Li-hf tensors observed for the surroundings of CO(2)(-) by ENDOR technique were in fairly good agreement with DFT calculations. The CO(2)(-) radicals are found to be so stable that the formate is applicable to the ESR dosimetry, because of fully relaxing in a fully relaxed geometrical structure of the CO(2)(-) component and remaining tight
High-resolution infrared spectrum of the fundamental band of LiCl at a temperature of 830°C
作者:G.A. Thompson、A.G. Maki、Wm.B. Olson、A. Weber
DOI:10.1016/0022-2852(87)90127-5
日期:1987.7
Comparison is made with the constants derived from a direct fit of the observed transitions to a Dunham potential function with only 13 coefficients including for Δ correction terms. The gas phase band center for the v = 1–0 transition of 7 Li 35 Cl is 634.0753(7) cm −1 .
摘要 6 LiCl 和 7 LiCl 的高分辨率傅里叶变换光谱已在 830°C 下记录。在 500- 至 730-cm -1 区域中,总共以 0.006 cm -1 分辨率测量了 2522 条线。使用 19 个同位素不变的振动常数,包括五个 Δ ij 校正项到通常的 Dunham Y ij 项,所有四种同位素物种的数据已与 0.00027 cm -1 的标准偏差拟合。与从观察到的跃迁直接拟合到 Dunham 势函数的常数进行比较,该函数只有 13 个系数,包括 Δ 校正项。7 Li 35 Cl 的 v = 1-0 跃迁的气相带中心为 634.0753(7) cm -1 。
6Li and 7Li MAS NMR Studies on Fast Ionic Conducting Spinel-Type Li2MgCl4, Li2–xCuxMgCl4, Li2–xNaxMgCl4, and Li2ZnCl4
作者:R. Nagel、Th.W. Groß、H. Günther、H.D. Lutz
DOI:10.1006/jssc.2002.9534
日期:2002.5
6Li and 7Li MAS NMR spectra including 1D-EXSY (exchange spectroscopy) and inversion recovery experiments of fast ionic conducting Li2MgCl4, Li2–xCuxMgCl4, Li2–xNaxMgCl4, and Li2ZnCl4 have been recorded and discussed with respect to the dynamics and local structure of the lithium ions. The chemical shifts, intensities, and half-widths of the Li MAS NMR signals of the inverse spinel-type solid solutions
6 Li和7 Li MAS NMR光谱,包括1D-EXSY(交换光谱)和快速离子导电Li 2 MgCl 4,Li 2– x Cu x MgCl 4,Li 2– x Na x MgCl 4和Li 2的反演恢复实验关于锂离子的动力学和局部结构,已经记录并讨论了ZnCl 4。反尖晶石型固溶体Li 2– x M I x MgCl 4的Li MAS NMR信号的化学位移,强度和半峰宽(M I = Cu,Na)和铜离子分别位于四面体位点和钠离子分别位于八面体位点和正常的尖晶石型锌化合物上,证实了低场信号分配给反尖晶石型Litet Li 2 MgCl 4和Naoct等人提出的向Lioct的高场信号。(2000)。与尖晶石型Li 2–2 x Mg 1+ x Cl 4固溶体具有空位和Mg 2+离子,Cu +和Na +聚集的相反离子分别随机分布在四面体和八面体位点。活化能由于锂离子在由NMR实验获得的反尖晶石型氯化物的各种动态过程是Ë一个=