Total synthesis of milbemycin E: resolution of the C(1)–C(10) fragment and final assembly
作者:Patrick G. Steel、(the late) Owen S. Mills、Emma R. Parmee、Eric J. Thomas
DOI:10.1039/a605894i
日期:——
The racemic hydroxycyclohexanone (±)-7, prepared by the
Robinson addition of the keto ester 5 to 3-methylbut-3-enone 6, has been
reduced stereoselectively to give the racemic cyclohexanediol
(±)-8. This has been resolved by fractional crystallisation of
the acetylmandelate esters 10 and 11. With (S)-acetyl mandelic
acid 9, diastereoisomer 11 crystallises out. The required,
dextrorotatory, enantiomer of the cyclohexanediol (±)-8 has been
obtained by selective saponification of the mixture of the
diastereoisomers 10 and 11, to give the mandelates 12 and 13, followed
by crystallisation of the required diastereoisomer 12. Saponification of
12 gives the dextrorotatory enantiomer of the cyclohexanediol (+)-8
[which could alternatively have been obtained directly from the racemic
diol (±)-8 using (R)-acetylmandelate ent-9].
Oxidation of the dextrorotatory diol (+)-8 gives the laevorotatory
hydroxy ketone (-)-7. The 3,4-double bond has been introduced into
this ketone by regioselective enol trimethylsilyl ether formation,
phenylselanation and oxidative elimination, followed by reduction to
give the cyclohexenediol 18. Methylation, saponification and
re-esterification give the 2-furylcyclohexenoate 23, which on oxidation
using singlet oxygen is converted into the hydroxybutenolide 3. The
dextrorotatory diol (+)-8 has also been converted into the
hydroxybutenolide 29 which lacks the 3,4-double bond. Conditions have
been developed for the Wittig reactions between the hydroxybutenolides
29 and 3 and the phosphonium salt 2 to give the esters 32 and 37 after
esterification using diazomethane and iodine induced isomerisation of
the 10,11-double bond. Deprotection gives the hydroxy acids 33 and 39
which have been cyclised to give the macrolides 34 and 40. Selective
reduction of these methyl esters gives 3,4-dihydromilbemycin E 35 and
milbemycin E 1.
外消旋羟基环己酮 (±)-7,由酮酯 5 与 3-甲基丁-3-烯酮 6 的罗宾逊加成法制备,经立体选择性还原得到外消旋环己二醇 (±)-8。乙酰扁桃酸酯 10 和 11 的分馏结晶解决了这一问题。对于 (S)- 乙酰扁桃酸 9,非对映异构体 11 结晶出来。通过选择性地皂化非对映异构体 10 和 11 的混合物,得到扁桃酸酯 12 和 13,然后结晶出所需的非对映异构体 12,就得到了所需的环己烷二醇 (±)-8的非对映异构体。对 12 进行皂化可得到环己二醇 (+)-8 的右旋对映体[也可使用 (R)-acetylmandelate ent-9 直接从外消旋二元醇 (±)-8中得到]。 右旋二元醇 (+)-8 氧化可得到左旋羟基酮 (-)-7。通过形成具有区域选择性的烯醇三甲基硅醚、苯硒化反应和氧化消除反应,将 3,4-双键引入该酮,然后还原得到环己二醇 18。通过甲基化、皂化和再酯化,可得到 2-呋喃基环己烯酸 23,使用单线态氧进行氧化后,可转化为羟基丁烯内酯 3。右旋二醇 (+)-8 也被转化为羟基丁烯内酯 29,后者缺少 3,4-双键。羟基丁烯内酯 29 和 3 与鏻盐 2 之间的维蒂希反应条件已经开发出来,在使用重氮甲烷进行酯化和碘诱导 10,11 双键异构化之后,可以得到酯 32 和 37。脱保护后得到羟基酸 33 和 39,这两种酸经过环化后得到大环内酯 34 和 40。选择性还原这些甲酯可得到 3,4-二氢米尔贝霉素 E 35 和米尔贝霉素 E 1。