Discovery of Pyrrolidine-Containing GPR40 Agonists: Stereochemistry Effects a Change in Binding Mode
摘要:
A novel series of pyrrolidine-containing GPR40 agonists is described as a potential treatment for type 2 diabetes. The initial pyrrolidine hit was modified by moving the position of the carboxylic acid, a key pharmacophore for GPR40. Addition of a 4-cis-CF3 to the pyrrolidine improves the human GPR40 binding K-i and agonist efficacy. After further optimization, the discovery of a minor enantiomeric impurity with agonist activity led to the finding that enantiomers (R,R)-68 and (S,S)-68 have differential effects on the radioligand used for the binding assay, with (R,R)-68 potentiating the radioligand and (S,S)-68 displacing the radioligand. Compound (R,R)-68 activates both G(q)-coupled intracellular Ca2+ flux and G(s)-coupled cAMP accumulation. This signaling bias results in a dual mechanism of action for compound (R,R)-68, demonstrating glucose-dependent insulin and GLP-1 secretion in vitro. In vivo, compound (R,R)-68 significantly lowers plasma glucose levels in mice during an oral glucose challenge, encouraging further development of the series.
Discovery of Pyrrolidine-Containing GPR40 Agonists: Stereochemistry Effects a Change in Binding Mode
摘要:
A novel series of pyrrolidine-containing GPR40 agonists is described as a potential treatment for type 2 diabetes. The initial pyrrolidine hit was modified by moving the position of the carboxylic acid, a key pharmacophore for GPR40. Addition of a 4-cis-CF3 to the pyrrolidine improves the human GPR40 binding K-i and agonist efficacy. After further optimization, the discovery of a minor enantiomeric impurity with agonist activity led to the finding that enantiomers (R,R)-68 and (S,S)-68 have differential effects on the radioligand used for the binding assay, with (R,R)-68 potentiating the radioligand and (S,S)-68 displacing the radioligand. Compound (R,R)-68 activates both G(q)-coupled intracellular Ca2+ flux and G(s)-coupled cAMP accumulation. This signaling bias results in a dual mechanism of action for compound (R,R)-68, demonstrating glucose-dependent insulin and GLP-1 secretion in vitro. In vivo, compound (R,R)-68 significantly lowers plasma glucose levels in mice during an oral glucose challenge, encouraging further development of the series.
Provided herein are compounds, such as a compound of Formula (I), as described herein, or a pharmaceutically acceptable salt thereof, that are immunoproteasome (such as LMP2 and LMP7) inhibitors. The compounds described herein can be useful for the treatment of diseases treatable by inhibition of immunoproteasomes. Also provided herein are pharmaceutical compositions containing such compounds and processes for preparing such compounds.
[EN] 3-(5-METHOXY-1-OXOISOINDOLIN-2-YL)PIPERIDINE-2,6-DIONE DERIVATIVES AND USES THEREOF<br/>[FR] DÉRIVÉS DE 3-(5-MÉTHOXY-1-OXOISOINDOLIN-2-YL)PIPÉRIDINE-2,6-DIONE ET LEURS UTILISATIONS
申请人:NOVARTIS AG
公开号:WO2021124172A1
公开(公告)日:2021-06-24
The present disclosure relates to compounds of formula (I') and pharmaceutical compositions and their use in reducing Widely Interspaced Zinc Finger Motifs (WIZ) expression levels, or inducing fetal hemoglobin (HbF) expression, and in the treatment of inherited blood disorders (e.g., hemoglobinopathies, e.g., beta-hemoglobinopathies), such as sickle cell disease and beta-thalassemia.
Provided herein are compounds, such as a compound of Formula (I), as described herein, or a pharmaceutically acceptable salt thereof, that are immunoproteasome (such as LMP2 and LMP7) inhibitors. The compounds described herein can be useful for the treatment of diseases treatable by inhibition of immunoproteasomes. Also provided herein are pharmaceutical compositions containing such compounds and processes for preparing such compounds.
3-(5-methoxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione Derivatives and Uses thereof
申请人:NOVARTIS AG
公开号:US20220402904A1
公开(公告)日:2022-12-22
The present disclosure relates to compounds of formula (I′) and pharmaceutical compositions and their use in reducing Widely Interspaced Zinc Finger Motifs (WIZ) expression levels, or inducing fetal hemoglobin (HbF) expression, and in the treatment of inherited blood disorders (e.g., hemoglobinopathies, e.g., beta-hemoglobinopathies), such as sickle cell disease and beta-thalassemia.