Mechanistic Details of the Nickel-Mediated Formation of Acrylates from CO2, Ethylene and Methyl Iodide
摘要:
Methyl iodide induces the stoichiometric cleavage of nickelalactones, which are key intermediates in the nickel-mediated reaction of CO2 and alkenes to acrylates. Herein, we propose a modified and extended mechanism for this reaction on the basis of theoretical and experimental investigations for the bidentate P ligand 1,2-bis(di-tert-butylphosphino)ethane (dtbpe). The calculated elementary steps agree well with experimental findings: reaction barriers are reasonable and explain the facile liberation of acrylate from a nickelalactone by methyl iodide. We were able to isolate reactive intermediates and to verify the existence of proposed reaction pathways. Additionally, we have identified unproductive pathways leading to byproducts (e.g., propionates and catalytically inactive organometallic species). Although those side reactions can be suppressed to a certain extent, the strong binding of acrylate to nickel prevents a catalytic reaction, at least for the chosen ligand.
Synthesis, Structure, and Reactivity of (tBu2PC2H4PtBu2)Ni(CH3)2 and {(tBu2PC2H4PtBu2)Ni}2(μ-H)2
摘要:
Oxidative addition of CH3I to (d(t)bpe)Ni(C2H4) (d(t)bpe = (Bu2PC2H4PBu2)-Bu-t-Bu-t) affords (d(t)bpe)-Ni(I)CH3 (I). The reaction of (d(t)bpe)NiCl2 or 1 with the stoichiometric quantity of (tmeda)Mg(CH3), yields (d(t)bpe)Ni(CH3)(2) (2). (d(t)bpe)Ni(I)CD3 (1-d(3)) and (d(t)bpe)Ni(CD3)(2) (2-d(6)) have been prepared analogously. Thermolysis of 2 in benzene affords {(d(t)bpe)Ni}(2)(mu-eta(2):eta(2)-C6H6) (4). The reaction of either 2 or 4 with hydrogen (H-2, HD, D-2) gives {(d(t)bpe)Ni}(2)(mu-H)(2) (3) and the isotopomers {(d(t)bpe)Ni}(2)(mu-H)(mu-D) (3-d) and {(d(t)bpe)Ni}(2)(mu-D)(2) (3-d(2)). According to the NMR spectra, the structure of 3 is dynamic in solution. The crystal structures of 2 and 3 have been determined by X-ray crystallography, Solution thermolysis of 2 or reduction of (dtbpe)NiCl2 with Mg* in the presence of alkanes probably involves a-complex-type intermediates [(d(t)bpe)Ni(eta(2)-R'H)] (R' = e.g. C2H5, A). While the nonisolated [(d(t)bpe)Ni-0] a-complexes A are exceedingly reactive intermediates, isolated 3 and 4 represent easy to handle starting complexes for [(d(t)bpe)Ni-0] reactions. Partial protolysis of 2 with CF3SO3H affords (d(t)bpe)Ni(CH3)(OSO2CF3) (5). Complex 5 reacts slowly with 2 equiv of ethene to give equimolar amounts of [(d(t)bpe)Ni(C2H5)](+)(OSO2CF3-) (6) and propene. The reaction is thought to be initiated by an insertion of ethene into the Ni-CH3 bond of 5 to form the intermediate [(d(t)bpe)Ni(C3H7)(OSO2CF3)] (G), followed by elimination of propene to give the hydride intermediate [(d(t)bpe)Ni(H)(OSO2CF3)] (H), which on insertion of ethene into the Ni-H bond affords 6.
Synthesis of 2-Nickela(II)oxetanes from Nickel(0) and Epoxides: Structure, Reactivity, and a New Mechanism of Formation
作者:Addison N. Desnoyer、Eric G. Bowes、Brian O. Patrick、Jennifer A. Love
DOI:10.1021/jacs.5b06735
日期:2015.10.14
frequently invoked as reactive intermediates in catalytic reactions of epoxides using nickel, but have never been isolated or experimentally observed in these transformations. Herein, we report the preparation of a series of well-defined nickelaoxetanes formed via the oxidative addition of nickel(0) with epoxides featuring ketones. The stereochemistry of the products is retained, which has not yet been reported