摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

nitrogen | 35456-13-4

分子结构分类

中文名称
——
中文别名
——
英文名称
nitrogen
英文别名
Azane;molecular nitrogen
nitrogen化学式
CAS
35456-13-4
化学式
H3N*N2
mdl
——
分子量
45.0439
InChiKey
MUNQMIHWKXBBNM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.19
  • 重原子数:
    3
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    48.6
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    nitrogen15N-氨 以 gas 为溶剂, 以0%的产率得到
    参考文献:
    名称:
    The rotational spectra of NH3–CO and NH3–N2
    摘要:
    The rotational spectra of NH3–CO, ND3–CO, ND2H–CO, NDH2–CO, NH3–13CO, and NH3–N2 have been measured by molecular beam electric resonance. The K=0 ground vibrational state transitions for these species were fit to a linear molecule Hamiltonian and the following constants were obtained for NH3–CO; (B+C)/2 (MHz)=3485.757(2), DJ (kHz)=110.2(2), eQqNaa (MHz)=−1.890(7), μa (D)=1.2477(8). These constants were also determined for ND3–CO [3078.440(7), 75.7(8), −2.028(15), 1.2845(9)], NHD2–CO [3202.303(4), 86.8(6), −1.972(11), 1.2686(8)], NH2D–CO [3338.235(4), 98.9(6), −1.916(12), 1.2546(8)], NH3–13CO [3451.684(5), 108.7(7), −1.870(15), 1.2452(8)]. For NH3–N2 (B+C)/2=3385.76(21), DJ =117.(10), and μa =1.069(14). For NH3–CO three ‖ΔJ‖=1, K=0 progressions were seen along with two ‖ΔJ‖=1, K=1 progressions, suggesting nonrigidity in the complex. The internal rotation of the NH3 subunit about its C3 axis is expected to be essentially free, but this motion, by itself, is not sufficient to explain the observed spectra, thus, large amplitude dynamics are occurring in at least two degrees of freedom. The quadrupole coupling constants, eQqNaa indicate that in each of the isotopes of NH3–CO the NH3 subunit has its C3 axis relatively rigidly oriented at an angle of approximately 36° with respect to the line connecting the centers of mass of the two subunits. The structure is not hydrogen bonded; the N atom is closest to the CO subunit. The orientation of the CO subunit is not established. The distance between the N atom and the center of mass of the CO unit (RN–CO) is 3.54(3) Å. The spectroscopic constants suggest that the weak bond stretching force constant is quite small (0.01 mdyn/Å) but compatible with the long bond length.
    DOI:
    10.1063/1.450366
  • 作为产物:
    描述:
    以 gaseous matrix 为溶剂, 生成 nitrogen
    参考文献:
    名称:
    The rotational spectra of NH3–CO and NH3–N2
    摘要:
    The rotational spectra of NH3–CO, ND3–CO, ND2H–CO, NDH2–CO, NH3–13CO, and NH3–N2 have been measured by molecular beam electric resonance. The K=0 ground vibrational state transitions for these species were fit to a linear molecule Hamiltonian and the following constants were obtained for NH3–CO; (B+C)/2 (MHz)=3485.757(2), DJ (kHz)=110.2(2), eQqNaa (MHz)=−1.890(7), μa (D)=1.2477(8). These constants were also determined for ND3–CO [3078.440(7), 75.7(8), −2.028(15), 1.2845(9)], NHD2–CO [3202.303(4), 86.8(6), −1.972(11), 1.2686(8)], NH2D–CO [3338.235(4), 98.9(6), −1.916(12), 1.2546(8)], NH3–13CO [3451.684(5), 108.7(7), −1.870(15), 1.2452(8)]. For NH3–N2 (B+C)/2=3385.76(21), DJ =117.(10), and μa =1.069(14). For NH3–CO three ‖ΔJ‖=1, K=0 progressions were seen along with two ‖ΔJ‖=1, K=1 progressions, suggesting nonrigidity in the complex. The internal rotation of the NH3 subunit about its C3 axis is expected to be essentially free, but this motion, by itself, is not sufficient to explain the observed spectra, thus, large amplitude dynamics are occurring in at least two degrees of freedom. The quadrupole coupling constants, eQqNaa indicate that in each of the isotopes of NH3–CO the NH3 subunit has its C3 axis relatively rigidly oriented at an angle of approximately 36° with respect to the line connecting the centers of mass of the two subunits. The structure is not hydrogen bonded; the N atom is closest to the CO subunit. The orientation of the CO subunit is not established. The distance between the N atom and the center of mass of the CO unit (RN–CO) is 3.54(3) Å. The spectroscopic constants suggest that the weak bond stretching force constant is quite small (0.01 mdyn/Å) but compatible with the long bond length.
    DOI:
    10.1063/1.450366
点击查看最新优质反应信息