This invention focuses on the marriage of solid-state electronics and neuronal function to create a new high-throughput electrophysiological assay to determine a compound's acute and chronic effect on cellular function. Electronics, surface chemistry, biotechnology, and fundamental neuroscience are integrated to provide an assay where the reporter element is an array of electrically active cells. This innovative technology can be applied to neurotoxicity, and to screening compounds from combinatorial chemistry, gene function analysis, and basic neuroscience applications. The system of the invention analyzes how the action potential is interrupted by drugs or toxins. Differences in the action potentials are due to individual toxins acting on different biochemical pathways, which in turn affects different ion channels, thereby changing the peak shape of the action potential differently for each toxin. Algorithms to analyze the action potential peak shape differences are used to indicate the pathway(s) affected by the presence of a new drug or compound; from that, aspects of its function in that cell are deduced. This observation can be exploited to determine the functional category of biochemical action of an unknown compound. An important aspect of the invention is surface chemistry that permits establishment of a high impedance seal between cell and a metal microelectrode. This seal recreates the interface that enables functional patch-clamp electrophysiology with glass micropipettes, and allows extracellular electrophysiology on a microelectrode array. Thus, the invention teaches the feasibility of using living cells as diagnostics for high throughput real-time assays of cell function.
本发明的重点是将固态电子学与神经元功能相结合,创造出一种新的高通量电生理学检测方法,以确定化合物对细胞功能的急性和慢性影响。电子学、表面
化学、
生物技术和基础神经科学融为一体,提供了一种以电活性细胞阵列为报告元件的检测方法。这项创新技术可应用于神经毒性、组合
化学化合物筛选、
基因功能分析和基础神经科学应用。本发明的系统可分析药物或毒素如何干扰动作电位。动作电位的差异是由于不同的毒素作用于不同的生化途径,进而影响不同的离子通道,从而使每种毒素的动作电位峰值形状发生不同的变化。分析动作电位峰值形状差异的算法可用于指出受新药或化合物影响的途径,并由此推断其在该细胞中的功能。这种观察结果可用于确定未知化合物的生化作用功能类别。本发明的一个重要方面是表面
化学,可在细胞和
金属微电极之间建立高阻抗密封。这种密封再现了可使用
玻璃微量移液管进行功能性膜片钳电生理学研究的界面,并可在微电极阵列上进行细胞外电生理学研究。因此,本发明证明了将活细胞作为诊断设备用于高通量实时细胞功能测试的可行性。