摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,9-dichlorodibenzo-p-dioxin | 82291-28-9

中文名称
——
中文别名
——
英文名称
1,9-dichlorodibenzo-p-dioxin
英文别名
1,9-dichlorodibenzodioxin
1,9-dichlorodibenzo-p-dioxin化学式
CAS
82291-28-9
化学式
C12H6Cl2O2
mdl
——
分子量
253.084
InChiKey
JZDVJXBKJDADAY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 保留指数:
    1982;1970;1971

计算性质

  • 辛醇/水分配系数(LogP):
    5.7
  • 重原子数:
    16
  • 可旋转键数:
    0
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    18.5
  • 氢给体数:
    0
  • 氢受体数:
    2

ADMET

代谢
CDDs通过口服、吸入和皮肤暴露途径被吸收。CDDs通过血清脂质和脂蛋白在血浆中运输,主要分布到肝脏和脂肪组织。CDDs通过微粒体单加氧酶系统非常缓慢地被代谢为极性代谢物,这些代谢物可以与葡萄糖醛酸和谷胱甘肽发生结合反应。它们可能通过诱导I相和II相酶来增加自己的代谢速率。CDDs的主要排泄途径是胆汁和粪便,尽管也有少量通过尿液和哺乳排出。
CDDs are absorbed through oral, inhalation, and dermal routes of exposure. CDDs are carried in the plasma by serum lipids and lipoproteins, distributing mainly to the liver and adipose tissue. CDDs are very slowly metabolized by the microsomal monooxygenase system to polar metabolites that can undergo conjugation with glucuronic acid and glutathione. They may increase the rate of their own metabolism by inducing both phase I and phase II enzymes. The major routes of excretion of CDDs are the bile and the faeces, though smaller amounts are excreted in the urine and via lactation. (L177)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
CDDs通过结合芳基烃受体并随后改变某些基因的转录来产生其毒性作用。对Ah受体的亲和力取决于特定CDD的结构。基因表达的改变可能是由于Ah受体及其异二聚体形成伙伴芳基烃受体核移位子与基因调控元件的直接相互作用,或者启动磷酸化/去磷酸化级联反应,随后激活其他转录因子。受影响的基因包括几个癌基因、生长因子、受体、激素和药物代谢酶。这些基因的转录/翻译改变被认为是CDDs大多数毒性作用的原因。
CDDs cause their toxic effects by binding to the aryl hydrocarbon receptor and subsequently altering the trascription of certain genes. The affinity for the Ah receptor depends on the structure of the specific CDD. The change in gene expression may result from the direct interaction of the Ah receptor and its heterodimer-forming partner, the aryl hydrocarbon receptor nuclear translocator, with gene regulatory elements or the initiation of a phosphorylation/dephosphorylation cascade that subsequently activates other transcription factors. The affected genes include several oncogenes, growth factors, receptors, hormones, and drug-metabolizing enzymes. The change in transcription/translation of these genes is believed to be the cause of most of the toxic effects of CDDs. (L177)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌物分类
3, 其对人类致癌性无法分类。
3, not classifiable as to its carcinogenicity to humans. (L135)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 健康影响
暴露于大量氯代二苯并二噁烷(CDDs)会引起氯痤疮,这是一种严重的皮肤疾病,其症状类似于粉刺,主要发生在面部和上半身。CDDs还可能引起肝损伤,并导致长期的葡萄糖代谢改变和激素水平的微妙变化。此外,研究表明CDDs可能干扰内分泌系统,削弱免疫系统,以及造成生殖损害和出生缺陷、中枢和周围神经系统病理变化、甲状腺疾病、子宫内膜异位症和糖尿病。(L177, L178)
Exposure to large amounts of CDDs causes chloracne, a severe skin disease with acne-like lesions that occur mainly on the face and upper body. CDDs may also cause liver damage and induce long-term alterations in glucose metabolism and subtle changes in hormonal levels. In addition, studies have shown that CDDs may disrupt the endocrine system and weaken the immune system, as well as cause reproductive damage and birth defects, central and peripheral nervous system pathology, thyroid disorders, endometriosis, and diabetes. (L177, L178)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 暴露途径
口服(L177);吸入(L177);皮肤(L177)
Oral (L177) ; inhalation(L177) ; dermal (L177)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 症状
除了氯痤疮,CDD暴露还会导致皮肤疹、色素沉着和体毛过度生长。
In addition to chloracne, CDD exposure causes skin rashes, discoloration, and excessive body hair. (L177)
来源:Toxin and Toxin Target Database (T3DB)

反应信息

  • 作为产物:
    描述:
    参考文献:
    名称:
    Temperature dependence of DCDD/F isomer distributions from chlorophenol precursors
    摘要:
    The temperature dependence of the gas-phase, rate-limited formation of dichlorodibenzo-p-dioxin (DCDD) and dichlorodibenzofuran (DCDF) isomers from 2,6-dichlorophenol and 3-chlorophenol, respectively, has been studied experimentally in an isothermal flow reactor over the range 300-900 degreesC under pyrolytic, oxidative and catalytic conditions and computationally using semi-empirical molecular orbital methods. At high temperatures, distributions of sets of DCDD/F condensation products are consistent with the calculated thermodynamic distributions, indicating that the relative rates of formation are governed by differences in symmetry and steric hindrance present in the isomer product structures. At low temperatures, however, this is not the case. In the case of 1,6- and 1,9-DCDD formed from 2, 6-dichlorophenol via Smiles rearrangement, the 1,6 isomer is favored at low temperatures more than thermodynamically predicted. This result appears to be consistent with kinetic effects of either the expansion of the five-membered ring Smiles intermediate or a lower activation energy six-membered ring intermediate pathway that produces only the 1,6 isomer. For formation of 1,7-, 3,7- and 1,9-DCDF from 3-chlorophenol, the 1,7 isomer fraction increases at low temperatures whereas thermodynamics predicts a decrease. This result can be attributed to steric effects in alternative "sandwich-type" approach geometries of phenoxy radicals to form the o, o'-dihydroxybiphenyl (DOHB) intermediate via its keto-tautomers. Higher level molecular theory (ab initio) is needed to provide a more quantitative description of these kinetics. (C) 2001 Elsevier Science Ltd. All rights reserved.
    DOI:
    10.1016/s0045-6535(00)00246-0
点击查看最新优质反应信息

文献信息

  • Temperature dependence of DCDD/F isomer distributions from chlorophenol precursors
    作者:James A. Mulholland、Umesh Akki、Yun Yang、Jae-Yong Ryu
    DOI:10.1016/s0045-6535(00)00246-0
    日期:2001.2
    The temperature dependence of the gas-phase, rate-limited formation of dichlorodibenzo-p-dioxin (DCDD) and dichlorodibenzofuran (DCDF) isomers from 2,6-dichlorophenol and 3-chlorophenol, respectively, has been studied experimentally in an isothermal flow reactor over the range 300-900 degreesC under pyrolytic, oxidative and catalytic conditions and computationally using semi-empirical molecular orbital methods. At high temperatures, distributions of sets of DCDD/F condensation products are consistent with the calculated thermodynamic distributions, indicating that the relative rates of formation are governed by differences in symmetry and steric hindrance present in the isomer product structures. At low temperatures, however, this is not the case. In the case of 1,6- and 1,9-DCDD formed from 2, 6-dichlorophenol via Smiles rearrangement, the 1,6 isomer is favored at low temperatures more than thermodynamically predicted. This result appears to be consistent with kinetic effects of either the expansion of the five-membered ring Smiles intermediate or a lower activation energy six-membered ring intermediate pathway that produces only the 1,6 isomer. For formation of 1,7-, 3,7- and 1,9-DCDF from 3-chlorophenol, the 1,7 isomer fraction increases at low temperatures whereas thermodynamics predicts a decrease. This result can be attributed to steric effects in alternative "sandwich-type" approach geometries of phenoxy radicals to form the o, o'-dihydroxybiphenyl (DOHB) intermediate via its keto-tautomers. Higher level molecular theory (ab initio) is needed to provide a more quantitative description of these kinetics. (C) 2001 Elsevier Science Ltd. All rights reserved.
查看更多

同类化合物

雌三醇3,17-二己酸酯 硫丙磷 二苯并对二噁英 [1,4]二恶英并[2,3-g][1,3]苯并噻唑-2-甲腈 [1,4]二恶英并[2,3-g][1,3]苯并噻唑 [1,4]二恶英并[2,3-f][1,3]苯并噻唑-2-甲腈 8-硝基-1-二苯并二恶因醇 6-溴-1,2,3,4,7,9-六氯氧杂蒽 4,9-二溴-1,2,6,7-四氯氧杂蒽 3-溴-1,2,4,6,7,8-六氯氧杂蒽 3-丙基呋喃并[3,4-b][1,4]苯并二氧杂环己-1(3H)-酮 3-(4-羟基苯基)-4-甲基-2(S)-[4-[2-(1-哌啶基)乙氧基]苯基]-2H-1-苯并吡喃-7-醇盐酸 2-羟基-1,3,7,8-四氯二苯并-4-二恶英 2-碘-7,8-二溴二苯并-1,4-二恶英 2-硝基二苯并二恶因 2-硝基-3,7,8-三氯二苯并-4-二恶英 2-溴二苯并二恶因 2-溴-苯并-1,4-二噁烷 2-溴-3-氯氧杂蒽 2-氯二苯并-对-二恶英 2-叠氮基-7,8-二溴-3-碘二苯并二恶因 2,8-二苯并二恶因二醇 2,8-二苯并二恶因二甲醛 2,8-二溴二苯并二恶因 2,8-二氯恶蒽 2,7-二溴二苯并二恶因 2,7-二氯二苯并-对-二恶英 2,5-二氯-4-[4,5-二氢-3-甲基-5-羰基-4-[(4-磺酸根苯基)偶氮]-1H-吡唑-1-基]苯磺化钡 2,3-二溴二苯并对二恶英 2,3-二溴-7,8-二氢二噁英二苯并二噁英 2,3-二溴-7,8-二氟二苯并对二恶英 2,3-二氯二苯并-对-二恶英 2,3-二氯-7-硝基二苯并-4-二恶英 2,3-二氯-7,8-二氟二苯并对二恶英 2,3-二氟二苯并对二恶英 2,3,7-三氯二苯并-对-二恶英 2,3,7,8-四溴二苯并对二噁英 2,3,7,8-四氯-二苯并(b,e)(1,4)二恶英-13C12 2,3,4,6,8-五氯二苯并-对二恶英 1H-[1,4]二噁英并[2,3-e]苯并咪唑(9CI) 1-硝基-2,3,7,8-四氯二苯并-p-二噁英 1-溴二苯并二恶英 1-溴-2,3,4,6,7,8-六氯氧杂蒽 1-氯二苯并-对-二恶英 1-氨基-3,7,8-三氯二苯并-4-二噁英 1-氨基-2,3,7,8-四氯二苯并-p-二噁英 1-(~2~H_5_)苯基(~2~H_6_)丙烷-2-胺 1,7,8-三氯二苯并-对-二恶英 1,6-二溴二苯并对二恶英 1,6-二氯二苯并-对-二恶英