摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-Formyl-benzoic acid 4-nitro-phenyl ester | 131266-90-5

中文名称
——
中文别名
——
英文名称
4-Formyl-benzoic acid 4-nitro-phenyl ester
英文别名
Benzoic acid, 4-formyl-, 4-nitrophenyl ester;(4-nitrophenyl) 4-formylbenzoate
4-Formyl-benzoic acid 4-nitro-phenyl ester化学式
CAS
131266-90-5
化学式
C14H9NO5
mdl
——
分子量
271.229
InChiKey
DRPWQWRXUPSARG-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.9
  • 重原子数:
    20
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    89.2
  • 氢给体数:
    0
  • 氢受体数:
    5

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-Formyl-benzoic acid 4-nitro-phenyl esterpotassium permanganate 作用下, 以 吡啶 为溶剂, 以40 mg的产率得到Terephthalic acid mono-(4-nitro-phenyl) ester
    参考文献:
    名称:
    Acceleration of p-Nitrophenyl Ester Cleavage by Zn(II)-Organized Molecular Receptors
    摘要:
    Tris(2-aminoethyl)amine (TREN) has been functionalized by introducing phenolic residues in the tripodal ligand side arms. The resulting functionalized ligands 1-5 form stable complexes with Zn(II) ions at pH > 6-6.5. The conformation of the Zn(II) complexes is such to form an ill-defined cavity with the metal ion occupying its bottom and the aromatic residues defining its hydrophobic walls. In these Zn(II) complexes one of the phenolic hydroxyls is, depending on the structure of the ligand, up to 1.3 pK(a) units more acidic than that of phenol itself. This enhanced acidity is attributed to second sphere coordination to the metal center. The complexes, particularly 1 . Zn(II), behave as molecular receptors of p-nitrophenyl esters of carboxylic acids with binding constants greater than or equal to 300 M-1 for those substrates capable of coordination to the Zn(II) ion (p-nitrophenyl nicotinate, PNPN, p-nitrophenyl isonicotinate, PNPIN and p-nitrophenyl urocanoate, PNPU). At pH 8.3 they also accelerate the cleavage of these esters with rate accelerations with respect to the uncatalyzed: hydrolysis of up to 60 times, depending on the structure of the substrate. The kinetic analysis of the process shows that the rate effects are due to two independent mechanisms: a bimolecular process that does not comprise binding of the substrate and a pseudointramolecular process within the supramolecular complex made of ligand, metal ion, and substrate. In both cases the nucleophile is one of the phenolic hydroxyls of the functionalized side arms of the TREN-based complex which, in the first step, is acylated by the substrate and eventually slowly hydrolyzes turning over the catalyst. Determination of second-order rate constants shows that the nucleophilicity of the phenolic hydroxyls is higher than that of a substituted phenol of the same pK(a). Comparison of the metalloreceptor 1 . Zn(II) with cyclodextrins allowed one to highlight similarity and differences between the two receptors.
    DOI:
    10.1021/jo970783f
  • 作为产物:
    描述:
    对醛基苯甲酸氯化亚砜三乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 5.0h, 生成 4-Formyl-benzoic acid 4-nitro-phenyl ester
    参考文献:
    名称:
    Acceleration of p-Nitrophenyl Ester Cleavage by Zn(II)-Organized Molecular Receptors
    摘要:
    Tris(2-aminoethyl)amine (TREN) has been functionalized by introducing phenolic residues in the tripodal ligand side arms. The resulting functionalized ligands 1-5 form stable complexes with Zn(II) ions at pH > 6-6.5. The conformation of the Zn(II) complexes is such to form an ill-defined cavity with the metal ion occupying its bottom and the aromatic residues defining its hydrophobic walls. In these Zn(II) complexes one of the phenolic hydroxyls is, depending on the structure of the ligand, up to 1.3 pK(a) units more acidic than that of phenol itself. This enhanced acidity is attributed to second sphere coordination to the metal center. The complexes, particularly 1 . Zn(II), behave as molecular receptors of p-nitrophenyl esters of carboxylic acids with binding constants greater than or equal to 300 M-1 for those substrates capable of coordination to the Zn(II) ion (p-nitrophenyl nicotinate, PNPN, p-nitrophenyl isonicotinate, PNPIN and p-nitrophenyl urocanoate, PNPU). At pH 8.3 they also accelerate the cleavage of these esters with rate accelerations with respect to the uncatalyzed: hydrolysis of up to 60 times, depending on the structure of the substrate. The kinetic analysis of the process shows that the rate effects are due to two independent mechanisms: a bimolecular process that does not comprise binding of the substrate and a pseudointramolecular process within the supramolecular complex made of ligand, metal ion, and substrate. In both cases the nucleophile is one of the phenolic hydroxyls of the functionalized side arms of the TREN-based complex which, in the first step, is acylated by the substrate and eventually slowly hydrolyzes turning over the catalyst. Determination of second-order rate constants shows that the nucleophilicity of the phenolic hydroxyls is higher than that of a substituted phenol of the same pK(a). Comparison of the metalloreceptor 1 . Zn(II) with cyclodextrins allowed one to highlight similarity and differences between the two receptors.
    DOI:
    10.1021/jo970783f
点击查看最新优质反应信息

文献信息

  • Pd-Catalyzed Decarbonylative Olefination of Aryl Esters: Towards a Waste-Free Heck Reaction
    作者:Lukas J. Gooßen、J. Paetzold
    DOI:10.1002/1521-3773(20020402)41:7<1237::aid-anie1237>3.0.co;2-f
    日期:2002.4.2
  • Acceleration of <i>p</i>-Nitrophenyl Ester Cleavage by Zn(II)-Organized Molecular Receptors
    作者:Paolo Tecilla、Umberto Tonellato、Andrea Veronese、Fulvia Felluga、Paolo Scrimin
    DOI:10.1021/jo970783f
    日期:1997.10.1
    Tris(2-aminoethyl)amine (TREN) has been functionalized by introducing phenolic residues in the tripodal ligand side arms. The resulting functionalized ligands 1-5 form stable complexes with Zn(II) ions at pH > 6-6.5. The conformation of the Zn(II) complexes is such to form an ill-defined cavity with the metal ion occupying its bottom and the aromatic residues defining its hydrophobic walls. In these Zn(II) complexes one of the phenolic hydroxyls is, depending on the structure of the ligand, up to 1.3 pK(a) units more acidic than that of phenol itself. This enhanced acidity is attributed to second sphere coordination to the metal center. The complexes, particularly 1 . Zn(II), behave as molecular receptors of p-nitrophenyl esters of carboxylic acids with binding constants greater than or equal to 300 M-1 for those substrates capable of coordination to the Zn(II) ion (p-nitrophenyl nicotinate, PNPN, p-nitrophenyl isonicotinate, PNPIN and p-nitrophenyl urocanoate, PNPU). At pH 8.3 they also accelerate the cleavage of these esters with rate accelerations with respect to the uncatalyzed: hydrolysis of up to 60 times, depending on the structure of the substrate. The kinetic analysis of the process shows that the rate effects are due to two independent mechanisms: a bimolecular process that does not comprise binding of the substrate and a pseudointramolecular process within the supramolecular complex made of ligand, metal ion, and substrate. In both cases the nucleophile is one of the phenolic hydroxyls of the functionalized side arms of the TREN-based complex which, in the first step, is acylated by the substrate and eventually slowly hydrolyzes turning over the catalyst. Determination of second-order rate constants shows that the nucleophilicity of the phenolic hydroxyls is higher than that of a substituted phenol of the same pK(a). Comparison of the metalloreceptor 1 . Zn(II) with cyclodextrins allowed one to highlight similarity and differences between the two receptors.
查看更多

同类化合物

棓酰棓酸三油酸酯 非那米柳 雷尼替丁 降钙素(humanreduced),8-L-缬氨酸-(9CI) 间苯甲酰氧基苯乙酮 间苯二甲酸二苯酯 间甲苯基苯甲酸酯 间双没食子酸 醋氨沙洛 邻苯二甲酸苄酯2-乙己基酯 邻苯二甲酸二苯酯 邻甲苯基苯甲酸酯 邻氨基苯甲酸(4-硝基苯基)酯 邻亚苯基二苯甲酸酯 贝诺酯 袋衣酸 萘-1,5-二磺酸-4-[2-(二甲氨基)乙氧基]-2-甲基-5-(丙烷-2-基)苯基2-氨基苯酸酯(1:1) 茶痂衣酸 苯甲醯柳酸甲酯 苯甲酸苯酯 苯甲酸五氟苯酯 苯甲酸丁香酚酯 苯甲酸4-[[(4-甲氧基苯基)亚甲基]氨基]苯基酯 苯甲酸4-(乙酰氨基)-2-[[2-[4-(乙酰氨基)苯甲酰基]亚肼基]甲基]苯基酯 苯甲酸2-(2-苯并恶唑基)苯酯 苯甲酸-4-甲基苯酯 苯甲酸-(2,4-二溴-3-甲基-苯基酯) 苯甲酸-(2,4-二叔丁基苯基酯) 苯甲酸,4-羟基-,4-(己氧基)苯基酯 苯甲酸,4-羟基-,4-(十二烷氧基)苯基酯 苯甲酸,4-甲氧基-,2-甲酰基苯基酯 苯甲酸,4-甲基-,4-甲基苯基酯 苯甲酸,4-戊基-,4-(壬氧基)苯基酯 苯甲酸,4-丁氧基-,1,4-亚苯基酯 苯甲酸,4-[1-(己氧基)乙基]-,4-(辛氧基)苯基酯 苯甲酸,4-(苯基甲氧基)-,4-(癸氧基)苯基酯 苯甲酸,4-(癸氧基)-,4-[氰基[(1-羰基戊基)氧代]甲基]苯基酯,(R)- 苯甲酸,4-(癸氧基)-,4-[(4-甲基己基)氧代]苯基酯 苯甲酸,4-(癸氧基)-,4-(2-甲基丁基)苯基酯 苯甲酸,4-(己氧基)-,1,4-亚苯基酯 苯甲酸,3-[[4-(1,1-二甲基乙基)苯甲酰]氧代]-4-甲基-,甲基酯 苯甲酸,3,4-二(癸氧基)-,4-[(苯基甲氧基)羰基]苯基酯 苯甲酸,2-庚基-4-[(2-羟基-4-甲氧基-6-戊基苯甲酰)氧代]-6-甲氧基-,苯基甲基酯 苯甲酸,2,4,6-三甲基-,2,4,6-三甲苯基酯 苯甲酸,2,3-二甲基-,2-硝基苯基酯 苯甲酸,(2-乙氧基-4-甲酰)苯酯 苯甲酰氧基苯甲酸苄酯 苯扎贝特杂质1 苯并呋喃-2-羧酸苯胺 苯并[b][1,5]苯并二氧杂卓-6-酮