摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

protohypericin

中文名称
——
中文别名
——
英文名称
protohypericin
英文别名
7,11,13,16,18,22-hexahydroxy-5,24-dimethylheptacyclo[13.11.1.12,10.03,8.019,27.021,26.014,28]octacosa-1,3(8),4,6,10,12,14(28),15(27),16,18,21(26),22,24-tridecaene-9,20-dione
protohypericin化学式
CAS
——
化学式
C30H18O8
mdl
——
分子量
506.468
InChiKey
YLILOANQCQKPOD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.05
  • 重原子数:
    38.0
  • 可旋转键数:
    0.0
  • 环数:
    7.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    155.52
  • 氢给体数:
    6.0
  • 氢受体数:
    8.0

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    protohypericin 生成 alkaline earth salt of/the/ methylsulfuric acid
    参考文献:
    名称:
    Brockmann; Eggers, Chemische Berichte, 1958, vol. 91, p. 81,94
    摘要:
    DOI:
  • 作为产物:
    描述:
    大黄素哌啶吡啶-N-氧化物 、 iron(II) sulfate 作用下, 以 吡啶 为溶剂, 生成 protohypericin
    参考文献:
    名称:
    使用金丝桃素评价红细胞浓缩物中包膜病毒灭活的策略
    摘要:
    光动力诱导的病毒灭活在防止可输血产品中包膜病毒感染的传播方面似乎很有希望。评估了利用金丝桃素作为光敏剂灭活浓缩红细胞浓缩物 (PRC) 中关键包膜病毒的潜力。除了有效灭活≥106 TCID50的人类免疫缺陷病毒(HIV)外,中国牛病毒性腹泻病毒(BVDV)的灭活被用作丙型肝炎病毒的模型,以克服丙型肝炎病毒(HCV)可靠实验系统的不足) 灭活。BVDV 对金丝桃素灭活的敏感性比 HIV 高两个数量级。作为杀病毒功效分析的一部分,研究了光敏化对携带静止整合 HIV 前病毒的造血细胞系的影响,作为评估潜伏感染细胞中病毒灭活的模型。金丝桃素的光敏作用有效地阻止了佛波酯诱导的这些细胞产生病毒。照明条件的改进,结合单色钠光源,其发射光谱与金丝桃素的吸收峰重合,具有高度的杀病毒性,但会导致不可接受的溶血水平。通过将金丝桃素与人血清白蛋白(白蛋白-金丝桃素)复合,可以保护红细胞免受光毒性细胞损伤,但溶血的减少是以牺牲杀病毒功效为代价的。因此,
    DOI:
    10.1562/0031-8655(2000)0710188sfeoev2.0.co2
点击查看最新优质反应信息

文献信息

  • AN IMPROVED SYNTHESIS OF HYPERICIN AND RELATED COMPOUNDS
    作者:Ewa Gruszecka-Kowalik、Leon H. Zalkow
    DOI:10.1080/00304940009356746
    日期:2000.2
    quinone from the traditional medicinal plant St. John's wort (Hypericum genus) has been known for decades.l In recent years, the use of hypericin experienced a renaissance and much attention has been directed to it as a photodynamic agent possessing light-induced antiviral activity against several enveloped viruses, including human immunodeficiency virus (HIV), herpes simplex (HSV), Sindbis virus, murine
    金丝桃素 (3a),来自传统药用植物圣约翰草(金丝桃属)的天然羟基化多环醌已为人所知数十年。一种光动力剂,对几种包膜病毒具有光诱导的抗病毒活性,包括人类免疫缺陷病毒 (HIV)、单纯疱疹病毒 (HSV)、辛德毕斯病毒、鼠巨细胞病毒 (MCMV)、马传染性贫血病毒 (EIAV)。金丝桃素已被证明可光灭活蛋白激酶 C (PKC)、“琥珀酸氧化酶”、“酪氨酸蛋白激酶 (TPK)3c,并被鉴定为磷脂酰肌醇-3-激酶(PtdIns-3-激酶)抑制剂。'd 光化学,光物理学、立体化学、互变异构化、广泛的研究人员对金丝桃素的光生物学活性和生物医学应用进行了深入研究^。^ 该化合物被证明可以抑制多种肿瘤细胞类型的生长。5 金丝桃素被用作光动力疗法 (PDT) 的新型光敏剂) 和用于诊断应用。h 1957 年,Brockmann 等人发表了第一个多步合成金丝桃素 (3a),以 3,5-二甲氧基邻苯二甲酸酐和间甲酚开始。一年后,由大黄素蒽酮合成
  • Highly efficient green synthesis and photodynamic therapeutic study of hypericin and its derivatives
    作者:Ying Zhang、Kun Shang、Xiaowen Wu、Siyu Song、Zebo Li、Zhichao Pei、Yuxin Pei
    DOI:10.1039/c8ra03732a
    日期:——

    A highly efficient synthetic pathway for hypericin as well as its derivatives was achieved under mild and green conditions with high yields.

    在温和和绿色的条件下,高效的合成途径被实现,可以得到高收率的金丝桃素及其衍生物。
  • Cancer‐Mitochondria Dual‐Targeting Glycol/Ferrocenium‐Based Polydopamine Nanoparticles for Synergistic Photothermal and Photodynamic Therapy
    作者:Yun Qu、Xinxin Wang、Zhichao Pei、Yuxin Pei
    DOI:10.1002/cmdc.202100548
    日期:2022.1.19
    Synergistic phototherapy: Nanoparticles based on lactose and ferrocenium derivatives conjugated with polydopamine (PDA@Lac/Fc/Hyp) were constructed for photothermal and photodynamic therapy. PDA@Lac/Fc/Hyp showed cancer-mitochondria dual-targeting ability deriving from lactose and ferrocenium derivatives, due to specific carbohydrate-protein interactions and cationic species properties, respectively
    协同光疗:构建了基于与聚多巴胺(PDA@Lac/Fc/Hyp)缀合的乳糖和二茂铁衍生物的纳米颗粒,用于光热和光动力治疗。PDA@Lac/Fc/Hyp 显示出源自乳糖和二茂铁衍生物的癌症-线粒体双重靶向能力,这分别归因于特定的碳水化合物-蛋白质相互作用和阳离子物种特性。此外,PDA@Lac/Fc/Hyp显示出良好的生物相容性和治疗效果。
  • Systems And Methods For Producing Synthetic Hypericin
    申请人:Soligenix, Inc.
    公开号:US20170253551A1
    公开(公告)日:2017-09-07
    Improved systems and methods for producing synthetic hypericin at high volume and high purity.
    改进的系统和方法,用于高产高纯度合成金丝桃素。
  • Photocytotoxicity of Protohypericin after Photoconversion to Hypericin
    作者:Els M. Delaey、Appolinary R. Kamuhabwa、Ann L. Vandenbogaerde、Peter A. de Witte
    DOI:10.1055/s-1999-14050
    日期:1999.12
    In the present study, protohypericin was synthesised in order to compare its intrinsic photocytotoxicity with that of hypericin. The experimental work was performed in specific filtered light conditions that prevented both an unintended photoconversion of protohypericin and photosensitization of the cells. Assessing the photocytotoxicity as a function of irradiation time, it was found that the photocytotoxicity of both compounds converged after a long irradiation time (i.e., 15 min), while the difference between the photocytotoxicities was maximal after a short irradiation time (i.e., 1 min). Since this could not be accounted for by a redistribution of protohypericin during irradiation, and the different irradiation times corresponded to different degrees of photoconversion of protohypericin into hypericin, the results clearly suggest that protohypericin exhibits intrinsically a dramatically lower photoactivity as compared to hypericin.
    本研究合成了原金丝桃素,以比较其与金丝桃素的内在光细胞毒性。实验工作是在特定的滤光条件下进行的,以防止原金丝桃素发生意外光转化和细胞光敏化。在评估光细胞毒性与辐照时间的函数关系时发现,两种化合物的光细胞毒性在较长的辐照时间(即 15 分钟)后趋于一致,而在较短的辐照时间(即 1 分钟)后,光细胞毒性之间的差异达到最大。由于这不是原金丝桃素在辐照过程中重新分布造成的,而且不同的辐照时间与原金丝桃素光化学转化为金丝桃素的程度不同相对应,因此结果清楚地表明,与金丝桃素相比,原金丝桃素本质上具有更低的光活性。
查看更多

同类化合物

苝-3,10-二酮 竹红菌乙素 痂囊腔菌素A 格孢毒素II 格孢毒素I 抑制剂C 卡弗他丁A 4,9-二羟基-6,7-二(2-羟基丙基)-1,5,8,12-四甲氧基苝-3,10-二酮 1-[3,10-二羟基-12-[2-(4-羟基苯甲酰基)氧基丙基]-2,6,7,11-四甲氧基-4,9-二氧代二萘嵌苯-1-基]丙-2-基4-羟基苯甲酸酯 1-[3,10-二羟基-12-(2-羟基丙基)-2,6,7,11-四甲氧基-4,9-二氧代二萘嵌苯-1-基]丙-2-基苯甲酸酯 (1S,12aR,12bS)-1,2,12a,12b-四氢-1,4,9,12a-四羟基-3,10-苝二酮 Dimethyl 3,10-Dihydro-2,4,6,7,9,11-hexamethoxy-3,10-dioxo-1,12-perylenediacetate Elsinochrome A Alterlosin I 4,10-dihydroxy-5,9-dihydrodinaphtho<2,1-b:1',2'-d>furan-5,9-dione Stemphyltoxin I Acetic acid 6,7,12-triacetoxy-3,10-dihydroxy-4,9-dioxo-4,9-dihydro-perylen-1-yl ester 4,9-Dihydroxy-1,6,7,12-tetramethoxy-perylene-3,10-dione 1,3,4,6,8,15-Hexahydroxy-10,13-bis-((1R,2S,5R)-2-isopropyl-5-methyl-cyclohexyloxymethyl)-dibenzo[a,o]perylene-7,16-dione 1,3,4,6,8,15-Hexahydroxy-10-((1R,2S,5R)-2-isopropyl-5-methyl-cyclohexyloxymethyl)-13-methyl-dibenzo[a,o]perylene-7,16-dione Acetic acid 4,9,12-triacetoxy-3,10-dioxo-3,10-dihydro-perylen-1-yl ester Cercosporin, pure 2,11-dihydroxy-4,6,7,9-tetramethoxy-1,12-bis-n-propyl-3,10-perylenequinone 7,19-dihydroxy-5-(2-hydroxypropyl)-21-[(2R)-2-hydroxypropyl]-6,20-dimethoxy-12,14-dioxahexacyclo[13.8.0.02,11.03,8.04,22.018,23]tricosa-1,3(8),4,6,10,15,18(23),19,21-nonaene-9,17-dione 2,11-Diamino-perylene-3,10-dione Stemphyltoxin III (3aS)-7,13-dihydroxy-1t,3c,8t,10c-tetramethyl-(3ar,10ac)-1,3,3a,8,10,10a-hexahydro-2,4,9,11-tetraoxa-dibenzo[bc,kl]coronene-6,14-dione [(2S)-1-[3,10-dihydroxy-12-[(2S)-2-(4-hydroxyphenoxy)carbonyloxypropyl]-2,6,7,11-tetramethoxy-4,9-dioxoperylen-1-yl]propan-2-yl] benzoate 2,4,6,7,9,11-hexamethoxy-1,12-bis-propyl-3,10-perylenequinone 6-[1-(9,17-Dihydroxy-5,10,16,21-tetramethoxy-13-methyl-7,19-dioxo-12-hexacyclo[13.8.0.02,11.03,8.04,22.018,23]tricosa-1(15),2(11),3(8),4(22),5,9,12,16,18(23),20-decaenyl)ethylideneamino]hexane-1-sulfonic acid 1,2,5,6-tetrahydroxy-dibenzo[a,o]perylene-7,16-dione calphostin D Phleichrome calphostin A [6-acetyl-8-(3-acetyl-5,7-diacetyloxy-2-methyl-4-oxo-1H-naphthalen-1-yl)-4-acetyloxy-7-methyl-5-oxo-8H-naphthalen-2-yl] acetate (13S)-12-acetyl-9,13,17-trihydroxy-5,10,16,21-tetramethoxy-13-methylhexacyclo[13.8.0.02,11.03,8.04,22.018,23]tricosa-1(15),2(11),3(8),4(22),5,9,16,18(23),20-nonaene-7,19-dione 4,9-Dihydroxy-1,5,6,7,8,12-hexamethylperylene-3,10-dione Carbonic acid, 2-(12-(2-(benzoyloxy)propyl)-3,10-dihydro-4,9-dihydroxy-2,6,7,11-tetramethoxy-3,10-dioxo-1-perylenyl)-1-methylethyl 4-hydroxyphenyl ester (-)-Phleichrome 1,3,4,6,8,15-Hexahydroxy-9,14-diisopropyl-10,13-dimethoxy-dibenzo[a,o]perylene-7,16-dione 1,6-dihydroxydibenzoperylene-7,16-dione 5-[1-(9,17-Dihydroxy-5,10,16,21-tetramethoxy-13-methyl-7,19-dioxo-12-hexacyclo[13.8.0.02,11.03,8.04,22.018,23]tricosa-1(15),2(11),3(8),4(22),5,9,12,16,18(23),20-decaenyl)ethylideneamino]pentane-1-sulfonic acid 4-[1-(9,17-Dihydroxy-5,10,16,21-tetramethoxy-13-methyl-7,19-dioxo-12-hexacyclo[13.8.0.02,11.03,8.04,22.018,23]tricosa-1(15),2(11),3(8),4(22),5,9,12,16,18(23),20-decaenyl)ethylideneamino]butane-1-sulfonic acid Cercosporin (12R,13S)-12-acetyl-9,16-dihydroxy-13-[(1S)-1-hydroxyethyl]-5,10,15,20-tetramethoxyhexacyclo[12.8.0.02,11.03,8.04,21.017,22]docosa-1(14),2(11),3(8),4(21),5,9,15,17(22),19-nonaene-7,18-dione 10,13-dimethyl-1,3,4,6-tetrahydroxy-helianthrone 12-Acetyl-16-(butylamino)-9,17-dihydroxy-5,10,21-trimethoxy-13-methylhexacyclo[13.8.0.02,11.03,8.04,22.018,23]tricosa-1(15),2(11),3(8),4(22),5,9,12,16,18(23),20-decaene-7,19-dione 5,7,11,13,16,18,22,24-Octahydroxy-6,12,17,23-tetramethyloctacyclo[13.11.1.12,10.03,8.04,25.019,27.021,26.014,28]octacosa-3,5,7,10,12,14(28),15(27),16,18,21,23,25-dodecaene-9,20-dione [(2R)-1-[3,10-dihydroxy-12-[(2S)-2-(4-hydroxyphenoxy)carbonyloxypropyl]-2,6,7,11-tetramethoxy-4,9-dioxoperylen-1-yl]propan-2-yl] benzoate [(2S)-1-[3,10-dihydroxy-12-[(2R)-2-(4-hydroxyphenoxy)carbonyloxypropyl]-2,6,7,11-tetramethoxy-4,9-dioxoperylen-1-yl]propan-2-yl] benzoate