摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

zinc dichromate(VI) | 14018-95-2

中文名称
——
中文别名
——
英文名称
zinc dichromate(VI)
英文别名
ZINC dichromate;zinc;oxido-(oxido(dioxo)chromio)oxy-dioxochromium
zinc dichromate(VI)化学式
CAS
14018-95-2
化学式
Cr2O7*Zn
mdl
——
分子量
281.378
InChiKey
KHADWTWCQJVOQO-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 溶解度:
    Soluble in acids and liquid ammonia
  • 密度:
    3.4 at 20 °C
  • 分解:
    Decomposes in hot water.

计算性质

  • 辛醇/水分配系数(LogP):
    -2.93
  • 重原子数:
    10
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    124
  • 氢给体数:
    0
  • 氢受体数:
    7

ADMET

代谢
锌可以通过肺部、皮肤和胃肠系统进入人体。肠道对锌的吸收是由锌载体蛋白CRIP控制的。锌还与金属硫蛋白结合,帮助防止过量锌的吸收。锌在体内广泛分布,存在于所有组织和组织液中,尤其在肝脏、胃肠系统、肾脏、皮肤、肺、大脑、心脏和胰腺中含量较高。在血液中,锌与红细胞中的碳酸酐酶结合,也与血浆中的白蛋白、α2-巨球蛋白和氨基酸结合。白蛋白和氨基酸结合的锌可以通过组织膜扩散。锌通过尿液和粪便排出体外。铬可以通过口服、吸入或皮肤接触被吸收,并分布到几乎所有组织中,肾脏和肝脏中含量最高。骨骼也是一个主要的储存场所,可能有助于长期保留。六价铬与硫酸盐和铬酸盐的相似性使其能够通过硫酸盐转运机制进入细胞。在细胞内,六价铬首先被许多物质(包括抗坏血酸、谷胱甘肽和烟酸腺嘌呤二核苷酸)还原为五价铬,然后还原为三价铬。铬几乎全部通过尿液排出体外。(A12,L16,L49)
Zinc can enter the body through the lungs, skin, and gastrointestinal tract. Intestinal absorption of zinc is controlled by zinc carrier protein CRIP. Zinc also binds to metallothioneins, which help prevent absorption of excess zinc. Zinc is widely distributed and found in all tissues and tissues fluids, concentrating in the liver, gastrointestinal tract, kidney, skin, lung, brain, heart, and pancreas. In the bloodstream zinc is found bound to carbonic anhydrase in erythrocytes, as well as bound to albumin, _2-macroglobulin, and amino acids in the the plasma. Albumin and amino acid bound zinc can diffuse across tissue membranes. Zinc is excreted in the urine and faeces. Chromium is absorbed from oral, inhalation, or dermal exposure and distributes to nearly all tissues, with the highest concentrations found in kidney and liver. Bone is also a major storage site and may contribute to long-term retention. Hexavalent chromium's similarity to sulfate and chromate allow it to be transported into cells via sulfate transport mechanisms. Inside the cell, hexavalent chromium is reduced first to pentavalent chromium, then to trivalent chromium by many substances including ascorbate, glutathione, and nicotinamide adenine dinucleotide. Chromium is almost entirely excreted with the urine. (A12, L16, L49)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 毒性总结
识别和使用:铬酸锌是一种橙黄色的粉末。铬酸锌主要用于金属底漆,用以提供防腐蚀保护。人类暴露和毒性:根据对铬颜料工人肺癌死亡率的研究,铬酸锌似乎是最强的致癌物。在28名喷漆工人的尿检研究中,由于使用了含有铬酸锌的洗涤底漆而没有采取防护措施,结果显示铬浓度升高。喷漆工人和对照组中出现的健康投诉,如疲劳增加、短期记忆减退和头痛,发生的频率相同。流行病学研究显示,铬颜料工人的肺癌发病率有所增加,然而,癌症病例的数量很少,铬酸锌的浓度未知。动物研究:实验室动物已通过铬酸锌诱导出肺部肿瘤,并且铬酸锌在细菌测试系统中显示出致突变活性。新西兰有记录显示,被认为接触过铬酸锌糊剂的牛出现死亡。每天30-40毫克/千克体重的剂量,在一个月内导致幼牛严重慢性中毒。成年牛的急性致死剂量是这个量的约20倍。这种状况产生的显著临床特征是大量腹泻,在慢性病例中导致严重脱水和低终末血压。消化道的变化是最显著的尸检发现。在急性中毒中,整个肠道严重充血和发炎,胃粘膜脱落。在慢性中毒中,仅在胃中出现充血和炎症;特别是瘤胃和皱胃显示出严重的溃疡和几乎穿孔。
IDENTIFICATION AND USE: Zinc dichromate is a orange-yellow powder. Zinc chromates are employed primarily in priming paints used for metals, for which they provide resistance against corrosion. HUMAN EXPOSURE AND TOXICITY: Zinc chromate appeared to be the most potent carcinogen, based on studies of lung cancer mortality in chromate pigment workers. In 28 spray painters the urine studies showed elevated chromium concentrations as a result of using zinc chromate containing wash primers without taking measures to protect themselves from contamination. Health complaints like increased tiredness, deterioration in short term memory, and headache were equally frequent in spray painters and comparisons. Epidemiologic studies have shown an increased incidence of lung cancer among chromate pigment workers, however, the number of cancer cases was small and the concentrations of zinc-chromate were not known. ANIMAL STUDIES: Lung tumors have been induced by zinc chromates in laboratory animals and zinc-chromate has shown mutagenic activity in bacterial test systems. Deaths in cattle believed to have had access to zinc chromate paste have been recorded in New Zealand. A daily dose of 30-40 mg/kg body weight produced severe chronic poisoning in young calves within one month. The acute lethal dose for adult cattle is about 20 times this amount. The outstanding clinical feature of the condition produced was profuse scouring, leading in chronic cases to severe dehydration and a low terminal blood pressure. Changes in the alimentary tract were the most marked post mortem finding. In acute poisoning, there was severe congestion and inflammation throughout the intestines and sloughing of the gastric mucous membranes. In chronic poisoning, congestion and inflammation were present only in the stomach; the rumen and abomasum in particular showing severe ulceration and near perforation.
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 毒性总结
缺铁性贫血是由于锌的过度吸收抑制了铜和铁的吸收,这很可能是通过肠道粘膜细胞的竞争性结合实现的。铜和锌的不平衡水平与Cu,Zn-超氧化物歧化酶结合已被联系到肌萎缩侧索硬化症(ALS)。胃酸溶解金属锌产生腐蚀性的氯化锌,这可能会损伤胃粘膜。金属烟雾热被认为是对吸入锌的免疫反应。六价铬的致癌效应是由其代谢物——五价铬和三价铬引起的。DNA损伤可能是由细胞中存在的过氧化氢分子在五价铬的再氧化过程中产生的羟基自由基引起的。三价铬还可能与肽、蛋白质和DNA形成复合物,导致DNA-蛋白质交联、DNA链断裂、DNA-DNA链间交联、铬-DNA加合物、染色体畸变和细胞信号通路的变化。已经证明,它通过过度刺激细胞调节途径和通过激活某些丝裂原活化蛋白激酶来增加过氧化氢水平,从而诱导癌变。它还可能通过将组蛋白去乙酰化酶1-DNA甲基转移酶1复合物与CYP1A1启动子染色质交联,抑制组蛋白修饰,从而引起转录抑制。铬可能通过修饰金属调节转录因子1,导致抑制锌诱导的金属硫蛋白转录,从而增加其自身的毒性。(A12,L16,A34,A35,A36,L48,L49,A49)
Anaemia results from the excessive absorption of zinc suppressing copper and iron absorption, most likely through competitive binding of intestinal mucosal cells. Unbalanced levels of copper and zinc binding to Cu,Zn-superoxide dismutase has been linked to amyotrophic lateral sclerosis (ALS). Stomach acid dissolves metallic zinc to give corrosive zinc chloride, which can cause damage to the stomach lining. Metal fume fever is thought to be an immune response to inhaled zinc. Hexavalent chromium's carcinogenic effects are caused by its metabolites, pentavalent and trivalent chromium. The DNA damage may be caused by hydroxyl radicals produced during reoxidation of pentavalent chromium by hydrogen peroxide molecules present in the cell. Trivalent chromium may also form complexes with peptides, proteins, and DNA, resulting in DNA-protein crosslinks, DNA strand breaks, DNA-DNA interstrand crosslinks, chromium-DNA adducts, chromosomal aberrations and alterations in cellular signaling pathways. It has been shown to induce carcinogenesis by overstimulating cellular regulatory pathways and increasing peroxide levels by activating certain mitogen-activated protein kinases. It can also cause transcriptional repression by cross-linking histone deacetylase 1-DNA methyltransferase 1 complexes to CYP1A1 promoter chromatin, inhibiting histone modification. Chromium may increase its own toxicity by modifying metal regulatory transcription factor 1, causing the inhibition of zinc-induced metallothionein transcription. (A12, L16, A34, A35, A36, L48, L49, A49)
来源:Toxin and Toxin Target Database (T3DB)
毒理性
  • 致癌性证据
A1; 已确认的人类致癌物。/铬酸锌,以Cr表示/
A1; Confirmed human carcinogen. /Zinc chromates, as Cr/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
证据权重特征:根据当前指南(1986年),六价铬被归类为A组——已知的人类通过吸入途径的致癌物。通过口服途径的致癌性无法确定,被归类为D组。在拟议的指南(1996年)下,六价铬将被定性为通过吸入途径的已知人类致癌物,基于以下原因。已知六价铬通过吸入途径在人类中具有致癌性。对接触铬的工人的职业流行病学研究结果在研究者之间和研究人群中是一致的。已经建立了铬暴露与肺癌的剂量-反应关系。接触铬的工人既暴露于三价铬也暴露于六价铬化合物。然而,只有六价铬在动物研究中被发现的具有致癌性,因此得出结论,只有六价铬应该被归类为人类致癌物。动物数据与六价铬的人类致癌性数据一致。六价铬化合物在动物生物分析中具有致癌性,产生以下肿瘤类型:大鼠和小鼠的肌内注射部位肿瘤,各种六价铬化合物在大鼠的胸膜内植入部位肿瘤,各种六价铬化合物在大鼠的支气管内植入部位肿瘤,以及大鼠的皮下注射部位肉瘤。体外数据提示六价铬致癌性的潜在作用模式。六价铬的致癌性可能是由细胞内还原为三价形式后形成的致突变氧化DNA损伤所致。六价铬容易通过细胞膜,并在细胞内迅速还原,产生反应性的三价和四价铬中间体和活性氧种。在六价铬还原过程中形成了许多潜在的致突变DNA损伤。六价铬在细菌分析、酵母和V79细胞中具有致突变性,六价铬化合物降低了体外DNA合成的准确性,并因DNA损伤产生非计划性DNA合成。铬酸盐已被证明能转化原代细胞和细胞系。 人类致癌性数据:职业暴露于铬化合物的情况已在铬酸盐生产、镀铬、铬颜料、铁铬生产、金矿开采、皮革鞣制和铬合金生产行业中进行了研究。铬酸盐行业的工人接触三价和六价铬化合物。对日本、英国、西德和美国的铬酸盐生产厂家的流行病学研究揭示了职业暴露于铬与肺癌之间的相关性,但没有确定导致癌症的具体铬形态……对铬颜料工人的研究一致表明,职业铬暴露(主要是六价铬)与肺癌之间存在关联。对镀铬行业的研究表明,癌症与接触铬化合物之间存在正相关关系。 动物致癌性数据:动物数据与六价铬的人类流行病学研究结果一致……/六价铬/
WEIGHT OF EVIDENCE CHARACTERIZATION: Under the current guidelines (1986), Cr(VI) is classified as Group A - known human carcinogen by the inhalation route of exposure. Carcinogenicity by the oral route of exposure cannot be determined and is classified as Group D. Under the proposed guidelines (1996), Cr(VI) would be characterized as a known human carcinogen by the inhalation route of exposure on the following basis. Hexavalent chromium is known to be carcinogenic in humans by the inhalation route of exposure. Results of occupational epidemiological studies of chromium-exposed workers are consistent across investigators and study populations. Dose-response relationships have been established for chromium exposure and lung cancer. Chromium-exposed workers are exposed to both Cr(III) and Cr(VI) compounds. Because only Cr(VI) has been found to be carcinogenic in animal studies, however, it was concluded that only Cr(VI) should be classified as a human carcinogen. Animal data are consistent with the human carcinogenicity data on hexavalent chromium. Hexavalent chromium compounds are carcinogenic in animal bioassays, producing the following tumor types: intramuscular injection site tumors in rats and mice, intrapleural implant site tumors for various Cr(VI) compounds in rats, intrabronchial implantation site tumors for various Cr(VI) compounds in rats and subcutaneous injection site sarcomas in rats. In vitro data are suggestive of a potential mode of action for hexavalent chromium carcinogenesis. Hexavalent chromium carcinogenesis may result from the formation of mutagenic oxidatitive DNA lesions following intracellular reduction to the trivalent form. Cr(VI) readily passes through cell membranes and is rapidly reduced intracellularly to generate reactive Cr(V) and Cr(IV) intermediates and reactive oxygen species. A number of potentially mutagenic DNA lesions are formed during the reduction of Cr(VI). Hexavalent chromium is mutagenic in bacterial assays, yeasts and V79 cells, and Cr(VI) compounds decrease the fidelity of DNA synthesis in vitro and produce unscheduled DNA synthesis as a consequence of DNA damage. Chromate has been shown to transform both primary cells and cell lines. HUMAN CARCINOGENICITY DATA: Occupational exposure to chromium compounds has been studied in the chromate production, chromeplating and chrome pigment, ferrochromium production, gold mining, leather tanning and chrome alloy production industries. Workers in the chromate industry are exposed to both trivalent and hexavalent compounds of chromium. Epidemiological studies of chromate production plants in Japan, Great Britain, West Germany, and the United States have revealed a correlation between occupational exposure to chromium and lung cancer, but the specific form of chromium responsible for the induction of cancer was not identified ... Studies of chrome pigment workers have consistently demonstrated an association between occupational chromium exposure (primarily Cr(VI)) and lung cancer. Several studies of the chromeplating industry have demonstrated a positive relationship between cancer and exposure to chromium compounds. ANIMAL CARCINOGENICITY DATA: Animal data are consistent with the findings of human epidemiological studies of hexavalent chromium ... /Chromium (VI)/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
  • 致癌性证据
评估:有足够的人类证据证明铬(VI)化合物的致癌性。铬(VI)化合物会导致肺癌。此外,暴露于铬(IV)化合物与鼻咽癌之间也存在正相关关系。有足够的实验动物证据证明铬(VI)化合物的致癌性。铬(VI)化合物对人类具有致癌性(第1组)。/铬(VI)化合物/
Evaluation: There is sufficient evidence in humans for the carcinogenicity of chromium(VI) compounds. Chromium(VI) compounds cause cancer of the lung. Also positive associations have been observed between exposure to Chromium(IV) compounds and cancer of the nose and nasal sinuses. There is sufficient evidence in experimental animals for the carcinogenicity of chromium(VI) compounds. Chromium(VI) compounds are carcinogenic to humans (Group 1). /Chromium(VI) compounds/
来源:Hazardous Substances Data Bank (HSDB)

安全信息

  • 危险等级:
    6.1(a)
  • 包装等级:
    II
  • 危险类别:
    6.1(a)
  • 危险品运输编号:
    UN 3288
  • 储存条件:
    库房应保持通风、低温和干燥,并采取轻装轻卸的措施,同时要将这些物品与有机物、还原剂、硫、磷等易燃物质以及食品原料分开存储。

SDS

SDS:caab7a6db06d961817a13aa534332e7b
查看

制备方法与用途

类别:氧化剂
毒性分级:高毒
爆炸物危险特性:与还原剂、硫、磷等混合受热、撞击或摩擦时可爆炸
可燃性危险特性:燃烧时产生有毒含铬化合物烟雾
储运特性:库房应通风、低温和干燥;轻装轻卸,与有机物、还原剂、硫、磷及易燃物和食品原料分开存放
灭火剂:使用雾状水或砂土进行灭火
职业暴露限值:三氧化铬在空气中的最高容许浓度为0.1毫克/立方米

反应信息

  • 作为反应物:
    描述:
    zinc dichromate(VI) 以 further solvent(s) 为溶剂, 生成 chromium(III) oxide
    参考文献:
    名称:
    Lumiere, A. L.; Seyewetz, A., Bulletin de la Societe Chimique de France, 1905, vol. 33, p. 1040 - 1042
    摘要:
    DOI:
  • 作为产物:
    描述:
    potassium chromate 、 zinc(II) sulfate 以 not given 为溶剂, 生成 zinc dichromate(VI)
    参考文献:
    名称:
    Thomson, T., Philosophical Magazine (1798-1977), 1828, vol. 3, p. 81 - 82
    摘要:
    DOI:
  • 作为试剂:
    描述:
    trimethyl-(1-methyl-heptyloxy)-silanezinc dichromate(VI) 作用下, 以85%的产率得到仲辛酮
    参考文献:
    名称:
    IMMEDIATE AND HIGH YIELDING SOLVENT-FREE OXIDATION OF SILYL AND PYRANYL ETHERS TO THEIR CORRESPOUNDING CARBONYL COMPOUNDS WITH ZINC DICHROMATE TRIHYDRATE (ZnCr2O7·3H2O)
    摘要:
    Zinc dichromate trihydrate (ZnCr2O7.3H(2)O) is an efficient reagent for the immediate deprotection of aromatic and aliphatic silyl and pyranyl ethers into their corresponding carbonyl compounds in high yields at room temperature under solvent-free conditions.
    DOI:
    10.1080/10426500490463628
点击查看最新优质反应信息

文献信息

  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Cr: MVol.B, 401, page 887 - 890
    作者:
    DOI:——
    日期:——
  • Kruess, G.; Unger, O., Zeitschrift fur anorganische Chemie, 1895, vol. 8, p. 452 - 463
    作者:Kruess, G.、Unger, O.
    DOI:——
    日期:——
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Cr: MVol.B, 391, page 864 - 866
    作者:
    DOI:——
    日期:——
  • Cole, H. G.; Brocq, L. F. Le, Journal of Applied Chemistry, 1955, vol. 5, p. 149 - 170
    作者:Cole, H. G.、Brocq, L. F. Le
    DOI:——
    日期:——
  • Gmelin Handbuch der Anorganischen Chemie, Gmelin Handbook: Cr: MVol.B, 389, page 859 - 861
    作者:
    DOI:——
    日期:——
查看更多