摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

alumane;azane;methane;silane

中文名称
——
中文别名
——
英文名称
alumane;azane;methane;silane
英文别名
——
alumane;azane;methane;silane化学式
CAS
——
化学式
C0Al0N0Si0
mdl
——
分子量
40.5424
InChiKey
FYZYDFIDWOGYAD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.84
  • 重原子数:
    4.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    35.0
  • 氢给体数:
    1.0
  • 氢受体数:
    1.0

反应信息

  • 作为产物:
    描述:
    aluminum isopropoxide 在 polyureamethylvinylsilazane 作用下, 以 neat (no solvent) 为溶剂, 生成 alumane;azane;methane;silane
    参考文献:
    名称:
    Polymer-Ceramic Conversion of Liquid Polyaluminasilazanes for SiAlCN Ceramics
    摘要:
    液相多铝硅氮烷可通过液态聚脲硅氮烷与异丙基铝的简单反应制得。该反应通过红外光谱(FTIR)和质谱进行了研究。生成的多铝硅氮烷随后在流动氮气中于1000°C下热解,形成无定形的SiAlCN陶瓷。利用固态核磁共振(NMR)和FTIR研究了热解过程中结构的演变。光谱分析表明,陶瓷的无定形结构主要由SiC2N2和SiCN3作为构建单元,少量的SiC3N和SiN4单元,以及与氮结合的五配位或六配位铝组成。这些单元通过C−C/C=C键连接,或通过剪切N形成网络结构。结果还表明,这些单元的相对含量强烈依赖于铝的含量。
    DOI:
    10.1111/j.1551-2916.2005.00481.x
点击查看最新优质反应信息

文献信息

  • Low-temperature growth of SiCAlN films of high hardness on Si(111) substrates
    作者:Radek Roucka、John Tolle、David J. Smith、Peter Crozier、I. S. T. Tsong、John Kouvetakis
    DOI:10.1063/1.1413723
    日期:2001.10.29
    Thin films of metastable SiCAlN solid solution were deposited on Si(111) substrates at 550–750 °C, considerably below the miscibility gap of SiC and AlN phases at 1900 °C. Our low-temperature growth was based upon thermally activated reactions between a unimolecular precursor H3SiCN and Al atoms from an evaporative cell in a molecular-beam-epitaxy chamber. Characterization of deposited films by spectroscopic
    亚稳态 SiCAlN 固溶体薄膜在 550-750 °C 下沉积在 Si(111) 衬底上,大大低于 1900 °C 时 SiC 和 AlN 相的混溶间隙。我们的低温生长基于单分子前体 H3SiCN 与分子束外延室中蒸发池中的铝原子之间的热活化反应。通过光谱和显微技术表征沉积膜在整个柱状纤矿结构中产生接近化学计量的成分,其晶格参数非常接近 2H-SiC 和六方 AlN 的晶格参数。SiCAlN 薄膜的平均硬度为 25 GPa,与蓝宝石的硬度相当。
  • Growth of SiCAlN on Si(111) via a crystalline oxide interface
    作者:John Tolle、R. Roucka、P. A. Crozier、A. V. G Chizmeshya、I. S. T. Tsong、J. Kouvetakis
    DOI:10.1063/1.1507358
    日期:2002.9.16
    precursor, forming coherent interfaces with the Si substrate and the film. High-resolution transmission electron microscopy and electron energy-loss spectroscopy show that the amorphous SiO2 films are entirely transformed into a crystalline Si–Al–O–N framework in registry with the Si(111) surface. This crystalline interface acts as a template for nucleation and growth of epitaxial SiCAlN. Integration of wide-band-gap
    尽管两种材料之间存在结构差异和较大的晶格失配 (19%),但具有 2H-纤矿结构的单相 SiCAlN 外延膜的生长直接在 Si(111) 上进行。通过将 Si(111) 上的原生和热生长的 SiO2 层与 Al 原子和 H3SiCN 前驱体进行原位反应,将 Si(111) 上的原生和热生长的 SiO2 层转化为结晶氧化物,从而促进了相称的异质外延,从而与 Si 衬底和薄膜形成了相干界面。高分辨率透射电子显微镜和电子能量损失光谱表明,非晶 SiO2 薄膜完全转化为与 Si(111) 表面配准的结晶 Si-Al-O-N 骨架。该晶体界面充当外延 SiCAlN 成核和生长的模板。
  • Use of Post-heat Treatment to Obtain a 2H Solid Solution in Spark Plasma Sintering-Processed AlN–SiC Mixtures
    作者:Ryota Kobayashi、Junichi Tatami、Toru Wakihara、Katsutoshi Komeya、Takeshi Meguro、Takashi Goto、Rong Tu
    DOI:10.1111/j.1551-2916.2008.02307.x
    日期:2008.5
    Dense aluminum nitride–silicon carbide (AlN–SiC) solid solutions with a 2H structure were fabricated by the post‐heat treatment of dense AlN–SiC composites fabricated by spark plasma sintering (SPS). The changes in the relative density, microstructure, and phases present were investigated for the compositions of 25 mol% AlN–75 mol% SiC (AlN 25), 50 mol% AlN–50 mol% SiC (AlN 50), and 75 mol% AlN–25 mol% SiC (AlN 75). The AlN–SiC composites fabricated by the SPS were dense ceramics with fine microstructures and composed of 2H and 6H AlN–SiC solid solutions. The AlN 50 samples heat treated at 2200°C and the AlN 75 samples heat treated at 2100°C were also dense ceramics and composed of only the 2H AlN–SiC solid solution. In contrast, the AlN 25 samples heat treated at 2200°C were porous ceramics and composed of several AlN–SiC solid solutions (2H, 4H, 6H, and 15R), and the AlN 75 samples heat treated at 2200°C were decomposed into an Al melt. Dense AlN–SiC solid solutions composed of only the 2H phase can be obtained by controlling the heat‐treatment temperatures, except for the AlN 25 sample.
    通过火花浆料烧结(SPS)制备致密的铝氮化物-碳化(AlN-SiC)复合材料,并随后通过热处理得到了具有2H结构的致密AlN-SiC固溶体。研究了三种组分(25 mol% AlN-75 mol% SiC(AlN 25)、50 mol% AlN-50 mol% SiC(AlN 50)和75 mol% AlN-25 mol% SiC(AlN 75)的相对密度、微观结构和存在相的变化。通过SPS制备的AlN-SiC复合材料为致密陶瓷,具有精细的微观结构,由2H和6H AlN-SiC固溶体组成。在2200°C下热处理的AlN 50样品和在2100°C下热处理的AlN 75样品均为致密陶瓷,仅由2H AlN-SiC固溶体组成。相比之下,在2200°C下热处理的AlN 25样品为多孔陶瓷,由多种AlN-SiC固溶体(2H、4H、6H和15R)组成,而在2200°C下热处理的AlN 75样品分解为铝熔体。通过控制热处理温度,可以获得仅由2H相组成的致密AlN-SiC固溶体,除了AlN 25样品。
  • Combustion synthesis of hexagonal AlN–SiC solid solution under low nitrogen pressure
    作者:R.-C. Juang、C.-C. Chen、J.-C. Kuo、T.-Y. Huang、Y.-Y. Li
    DOI:10.1016/j.jallcom.2009.02.102
    日期:2009.7
    AlN–SiC solid solutions were synthesized by self-propagating combustion of powders consisting of Al, Si and carbon black (CB) under low nitrogen pressure (0.1–0.5 MPa), with the molar ratio of Al and Si, and nitrogen pressure as the main investigating parameter. The products were mainly AlN–SiC solid solution with a residual Si, and the morphology was of hexagonal crystal. Nearly pure AlN–SiC solid solution
    摘要 AlN-SiC 固溶体是由 Al、Si 和黑(CB)组成的粉末在低氮压力(0.1-0.5 MPa)下自蔓延燃烧合成的,Al 和 Si 的摩尔比为主要调查参数。产物主要为AlN-SiC固溶体,残留Si,形貌为六方晶。通过向起始粉末中添加额外的 CB 获得了几乎纯的 AlN-SiC 固溶体,在本研究中也具有最佳的固溶体均匀性。最佳的 Al/Si 摩尔比为 1 或 1.5,燃烧结果表明,更好的燃烧产生更高的燃烧温度、更高的产品纯度和更好的固溶体均匀性。增加氮气压力(从 0.1 到 0. 5 MPa)适度提高了燃烧温度和产品的均匀性,但燃烧速度增加了约 65%。AlN-SiC 固溶体 (1 1 0) XRD 峰的半峰全宽 (FWHM) 作为 AlN-SiC 固溶体的均匀性指数 (D. Kata, K. Shirai, M. Ohyanagi, ZA Munir , J. Am. Ceram
  • Growth Mechanisms for SiC-AlN Solid Solution Crystals Prepared by Combustion Synthesis
    作者:Huabin Wang、Derek O. Northwood、Jiecai Han、Shanyi Du
    DOI:10.1111/j.1551-2916.2005.00779.x
    日期:2006.2
    AlN–SiC solid solution particles with a variety of morphologies including faceted polyhedrons with or without ledges; hexagonal platelets; hexagonal columns with a hexagonal plate or a pyramidal cap; and interpenetrating cones, have been found in the combustion products of a mixture of Al, Si, and carbon black under a nitrogen pressure of 10 MPa. Combustion temperature (the growth temperature of crystals) is the most important factor controlling the morphology of crystals formed in the combustion product. When temperatures are close to the melting point of the solid solutions, a small driving force for nucleation and long distances of surface migration make nucleation on the basal plane difficult, and thus the solid solution particles tend to grow as platelets. Supersaturation is the second key factor influencing crystal growth. At relatively low temperatures, a low supersaturation at the large pores renders nucleation difficult and the solid solution particles tend to grow as platelets. At relatively low temperatures and high supersaturation, a relatively high driving force for nucleation and short mean distances of surface migration promote the growth of AlN–SiC solid solutions as polyhedrons. The formation of the ledges on the polyhedral particles is attributed to the differences in the evaporation rates and the deposition rates between Al and Si. At relatively low temperatures and an intermediate supersaturation, the solid solution particles grow as prismatic columns. The formation of the prismatic columns with a hexagonal plate, or a pyramidal cap, is attributed to a sudden change of temperature during combustion. A possible growth mechanism for the AlN–SiC solid solution cones is proposed.
    在氮气压力为10 MPa的条件下,研究了铝、黑混合物燃烧产物中的AlN–SiC固体溶液颗粒,发现其具有多种形态,包括有或无边缘的多面体;六角板状颗粒;六角柱状颗粒,顶端附有六角板或字塔状帽;以及相互穿插的锥体颗粒。燃烧温度(晶体的生长温度)是控制燃烧产物中晶体形貌的最重要因素。当温度接近固溶体的熔点时,较小的形核驱动力和较长的距离表面迁移使得基面形核变得困难,因此固溶体颗粒倾向于以板状生长。过饱和度是影响晶体生长的第二个关键因素。在相对较低的温度下,大孔隙处较低的过饱和度使得形核困难,固溶体颗粒倾向于以板状生长。在相对较低的温度和较高的过饱和度下,相对较高的形核驱动力和较短的平均迁移距离促进了AlN–SiC固溶体以多面体形态生长。多面体颗粒上边缘的形成归因于铝和蒸发速率与沉积速率的差异。在相对较低的温度和中等过饱和度下,固溶体颗粒以棱柱柱状生长。棱柱柱状颗粒顶端附有六角板或字塔状帽,这归因于燃烧过程中温度的 sudden change. 提出了AlN–SiC固溶体锥体的一种可能的生长机制。
查看更多