Hydrolysis of Organophosphorus Nerve Agent Soman by the Monoclonal Antibodies Elicited Against an Oxyphosphorane Hapten.
摘要:
The antibody-mediated hydrolysis of the nerve agent O-1,2,2-trimethylpropyl methylphosphonofluoridate (soman) 1 has now been established with two monoclonal antibodies raised against the cyclic pentacovalent methyloxyphosphorane hapten 10 that mimics the pentacoordinated trigonal bipyramidal transition-state of the reaction. The hydrolysis reaction was studied using molecular orbital methods at the MP2/6-31 + G*//HF/6-31 + G* level of accuracy. According to the nb initio carculations, the reaction seems to proceed via three separate transition-states. The calculations are in good agreement with the experimental results. The 1,3-dioxabenzophosphole hapten 10 was synthesized, coupled to the carrier protein and the antibodies were obtained by the hybridoma technique. Two antibodies, DB-108P and DB-108Q were found to enhance the rate of soman hydrolysis and they were kinetically characterised.
Hydrolysis of Organophosphorus Nerve Agent Soman by the Monoclonal Antibodies Elicited Against an Oxyphosphorane Hapten.
摘要:
The antibody-mediated hydrolysis of the nerve agent O-1,2,2-trimethylpropyl methylphosphonofluoridate (soman) 1 has now been established with two monoclonal antibodies raised against the cyclic pentacovalent methyloxyphosphorane hapten 10 that mimics the pentacoordinated trigonal bipyramidal transition-state of the reaction. The hydrolysis reaction was studied using molecular orbital methods at the MP2/6-31 + G*//HF/6-31 + G* level of accuracy. According to the nb initio carculations, the reaction seems to proceed via three separate transition-states. The calculations are in good agreement with the experimental results. The 1,3-dioxabenzophosphole hapten 10 was synthesized, coupled to the carrier protein and the antibodies were obtained by the hybridoma technique. Two antibodies, DB-108P and DB-108Q were found to enhance the rate of soman hydrolysis and they were kinetically characterised.