摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3,3'-diacetyl-cis-azobenzene | 151224-50-9

中文名称
——
中文别名
——
英文名称
3,3'-diacetyl-cis-azobenzene
英文别名
——
3,3'-diacetyl-cis-azobenzene化学式
CAS
151224-50-9
化学式
C16H14N2O2
mdl
——
分子量
266.299
InChiKey
DOIWHHWUHOVBBP-ZCXUNETKSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    450.6±30.0 °C(Predicted)
  • 密度:
    1.13±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    4.51
  • 重原子数:
    20.0
  • 可旋转键数:
    4.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.12
  • 拓扑面积:
    58.86
  • 氢给体数:
    0.0
  • 氢受体数:
    4.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3,3'-diacetyl-cis-azobenzene 在 2,4-bis(cyclohexylamino)-6-methoxy-1,3,5-triazine 作用下, 以 二氯甲烷 为溶剂, 生成 (E)-1,1'-(diazene-1,2-diyl)bis(1,3-phenylene)bis(ethan-1-one)
    参考文献:
    名称:
    Effects of the hydrogen-bonded interactions on the thermal cis to trans isomerization of 3,3′-diacetylazobenzene
    摘要:
    在 2,4-双(环己基氨基)-6-甲氧基-l,3,5-三嗪的存在下,3,3â²-二乙酰基-顺式偶氮苯 1b 的热异构化会因分子间氢键组装的形成而减慢。
    DOI:
    10.1039/c39930001044
  • 作为产物:
    参考文献:
    名称:
    Effects of the hydrogen-bonded interactions on the thermal cis to trans isomerization of 3,3′-diacetylazobenzene
    摘要:
    在 2,4-双(环己基氨基)-6-甲氧基-l,3,5-三嗪的存在下,3,3â²-二乙酰基-顺式偶氮苯 1b 的热异构化会因分子间氢键组装的形成而减慢。
    DOI:
    10.1039/c39930001044
点击查看最新优质反应信息

文献信息

  • Behavior of organic compounds confined in monoliths of sol–gel silica glass. Effects of guest–host hydrogen bonding on uptake, release, and isomerization of the guest compounds
    作者:Jovica D. Badjić、Nenad M. Kostić
    DOI:10.1039/b005823h
    日期:——
    Various proteins, catalysts, and other compounds can be encapsulated or diffused into porous sol–gel glasses, but little is known about their interactions with the glass matrix. We report unexpectedly large effects that hydrogen bonding between organic compounds and sol–gel silica has on equilibria and reactions involving these guest compounds. Silica monolith immersed in a solution takes up the organic solute. Styrene, which is incapable of hydrogen bonding, becomes evenly distributed between external solution and the glass. Aniline and N,N-diethyl-p-methoxybenzamide, which are capable of hydrogen bonding, become extracted into the glass when the solvent (neat CCl4) does not interfere with their hydrogen bonding with silica. They become evenly distributed between the solution and the glass when a component of the solvent (DMF added to CCl4) or chemical modification (trimethylsilylation) of the silica surface suppresses hydrogen bonding of the guests with the surface. Ultraviolet spectra show that silica–guest interactions are present when the guest uptake is excessive and absent when this uptake is balanced. Ultraviolet spectra of aniline show that the hydrogen atoms are donated by silica to the guest. Not only the extent, but also the rate, of uptake is enhanced when the guest makes hydrogen bonds to the silica matrix; suppression of these bonds lowers the uptake rate. Silica monolith extracts trans-3,3′-diacetylazobenzene from a CCl4 solution 1250-fold. Upon addition of DMF, hydrogen bonds are broken, and the monolith completely releases the solute into the external solution. Five derivatives of azobenzene (3,3′-dimethyl-, 3-acetyl-, 3,3′-diacetyl-, 3,5-diacetyl-, and 3,3′,5,5′-tetraacetylazobenzene), which differ in the propensity for accepting hydrogen atoms, served as photochromic probes and showed the effect of hydrogen bonding on reactivity. Both the photoinduced (trans-to-cis) and the subsequent thermal (cis-to-trans) isomerizations of the five derivatives obey the first-order law in glass as well as in free solution. When the solvent (neat CCl4) allows hydrogen bonding, the proportion of the isomers in the photostationary state differs between the glass and solution, and the rate constant for the thermal reaction is two to four times (in different derivatives) smaller in the glass than in solution. Evidently, hydrogen bonding retards the rearrangement of the probe molecules in the silica matrix. When hydrogen bonding is abolished (by addition of DMF to CCl4), the compositions of the photostationary state in the glass and in solution become equal, and so do the rate constants. Effects of hydrogen bonding on enzymes encapsulated in sol–gel glass and on the distribution of analytes between the glass monolith and the sample solution should be taken into consideration when designing accurate biosensors.
    各种蛋白质、催化剂和其他化合物都可以封装或扩散到多孔溶胶玻璃中,但人们对它们与玻璃基质的相互作用却知之甚少。我们报告了有机化合物与溶胶二氧化硅之间的氢键作用对涉及这些客体化合物的平衡和反应产生的意想不到的巨大影响。浸入溶液中的二氧化硅整体吸收有机溶质。不能发生氢键作用的苯乙烯会均匀地分布在外部溶液和玻璃之间。苯胺和 N,N-二乙基对甲氧基苯甲酰胺能够形成氢键,当溶剂(纯净的 CCl4)不干扰它们与二氧化硅的氢键结合时,它们就会被萃取到玻璃中。当溶剂中的某种成分(在 中加入 DMF)或二氧化硅表面的化学修饰(三甲基硅烷化)抑制了客体与二氧化硅表面的氢键结合时,它们就会在溶液和玻璃之间均匀分布。紫外光谱显示,当客体吸收过多时,二氧化硅与客体之间存在相互作用,而当这种吸收平衡时,则不存在相互作用。苯胺的紫外光谱显示,二氧化硅向客体提供了氢原子。当客体与二氧化硅基质形成氢键时,吸收的程度和速度都会提高;抑制这些氢键则会降低吸收速度。二氧化硅整体从 溶液中萃取反式-3,3â²-二乙酰偶氮苯的能力提高了 1250 倍。加入 DMF 后,氢键断裂,石将溶质完全释放到外部溶液中。偶氮苯的五种衍生物(3,3â²-二甲基偶氮苯、3-乙酰基偶氮苯、3,3â²-二乙酰偶氮苯、3,5-二乙酰偶氮苯和 3,3â²,5,5â²-四乙酰基偶氮苯)接受氢原子的倾向各不相同,它们可用作光致变色探针,并显示了氢键对反应活性的影响。这五种衍生物的光诱导异构化(反式-顺式)和随后的热异构化(顺式-反式)在玻璃中和自由溶液中都符合一阶定律。当溶剂(纯净的 )允许氢键作用时,玻璃和溶液中处于光静止状态的异构体比例不同,热反应的速率常数在玻璃中比在溶液中小 2 到 4 倍(对于不同的衍生物)。显然,氢键阻碍了探针分子在二氧化硅基质中的重新排列。当氢键被取消时(在 中加入 DMF),玻璃中的光静止态成分与溶液中的光静止态成分相等,速率常数也相等。在设计精确的生物传感器时,应考虑到氢键对封装在溶胶玻璃中的酶以及分析物在玻璃整体和样品溶液之间分布的影响。
  • Control of the thermalcis totrans isomerizations of azobenzene and thioindigo derivatives by the formation of supramolecular H-bonded assemblies
    作者:Jacqueline Rosengaus、Itamar Willner
    DOI:10.1002/poc.610080111
    日期:1995.1
    (association constants K = 4.9 × 104 and 3.5 × 105 1 mol−1, respectively). The thermal cis→trans isomerization of 4b and 5b to 3,3′-diacetyl-trans-azobenzene (4a), and 6,6′-diethoxy-trans-thioindigo (5a), is inhibited in the intermolecular complex 1a–4b and 1a–5b. Molecular mechanics calculations support the formation of the intermolecular H-bonded complexes between 1a and 4b or 5b.
    2,3-双(基环己基)-6-甲氧基-1,3,5-三嗪(1a)与3,3'-二乙酰基-顺式-偶氮烯(4)和6,6'-二乙氧基形成分子间H键合的配合物-顺式-靛蓝(5b),(缔合常数K分别为4.9×10 4和3.5×10 5 1 mol -1)。4b和5b的热顺→反异构化为3,3'-二乙酰基-反-偶氮苯(4a)和6,6'-二乙氧基-反-代靛蓝(5a)在分子间复合物1a–4b和1a-5b。分子力学计算支持在1a和4b或5b之间形成分子间H键合的配合物。
查看更多

同类化合物

黑洞猝灭剂-2,BHQ-2ACID 麦角甾烷-6-酮,2,3,22,23-四羟基-,(2a,3a,5a,22S,23S,24S)- 颜料橙61 阿利新黄GXS 阳离子红X-GTL 阳离子红5BL 阳离子橙RN 阳离子橙GLH 间甲基红 镨(3+)丙烯酰酸酯 镍酸酯(1-),[3-羟基-4-[(4-甲基-3-硫代苯基)偶氮]-2-萘羧酸根(3-)]-,氢 锂3-({4-[(4-羟基苯基)偶氮]-5-甲氧基-2-甲基苯基}偶氮)苯磺酸酯 钴,[二[m-[[1,2-二苯基-1,2-乙二酮1,2-二(肟酸根-kO)](2-)]]四氟二硼酸根(2-)-kN1,kN1',k2,kN2']-,(SP-4-1)- 钠5-氯-2-羟基-3-[(2-羟基-4-{[(4-甲基苯基)磺酰基]氧基}苯基)偶氮]苯磺酸酯 钠5-[[3-[[5-[[4-[[[4-[(4,5-二氢-3-甲基-5-氧代-1H-吡唑-4-基)偶氮]苯基]氨基]羰基]苯基]偶氮]-2,4-二羟基苯基]偶氮]-4-羟基苯基]偶氮]水杨酸盐 钠4-[(4-氨基苯基)偶氮]苯甲酸酯 钠4-[(4-{[4-(二乙基氨基)苯基]偶氮}苯基)偶氮]苯磺酸酯 钠4-[(4-{[2-羟基-5-(2-甲基-2-丙基)苯基]偶氮}苯基)偶氮]苯磺酸酯 钠4-({3-甲氧基-4-[(4-甲氧基苯基)偶氮]苯基}偶氮)苯磺酸酯 钠3-[4-(2-羟基-5-甲基-苯基)偶氮苯基]偶氮苯磺酸酯 钠3-({5-甲氧基-4-[(4-甲氧基苯基)偶氮]-2-甲基苯基}偶氮)苯磺酸酯 钠3-({4-[(4-羟基-2-甲基苯基)偶氮]-3-甲氧基苯基}偶氮)苯磺酸酯 金莲橙O 重氮基烯,苯基[4-(三氟甲基)苯基]- 重氮基烯,二[4-(1-甲基乙基)苯基]-,(Z)- 重氮基烯,二[4-(1-甲基乙基)苯基]-,(E)- 重氮基烯,[4-[(2-乙基己基)氧代]-2,5-二甲基苯基](4-硝基苯基)- 重氮基烯,1,2-二(4-丙氧基苯基)-,(1E)- 重氮基烯,(2-氯苯基)苯基- 酸性金黄G 酸性棕S-BL 酸性媒染棕 酸性媒介棕6 酸性媒介棕48 酸性媒介棕4 酸性媒介棕24 邻氨基偶氮甲苯 达布氨乙基甲硫基磺酸盐 赛甲氧星 茴香酸盐己基 茜素黄 R 钠盐 苯重氮化,2-甲氧基-5-甲基-4-[(4-甲基-2-硝基苯基)偶氮]-,氯化 苯酰胺,4-[4-(2,3-二氢-1,4-苯并二噁英-6-基)-5-(2-吡啶基)-1H-咪唑-2-基]- 苯酚,4-(1,1-二甲基乙基)-2-(苯偶氮基)- 苯酚,2-甲氧基-4-[(4-硝基苯基)偶氮]- 苯胺棕 苯胺,4-[(4-氯-2-硝基苯基)偶氮]- 苯磺酸,3,3-6-(4-吗啉基)-1,3,5-三嗪-2,4-二基二亚氨基2-(乙酰基氨基)-4,1-亚苯基偶氮二-,盐二钠 苯磺酸,2-[(4-氨基-2-羟基苯基)偶氮]- 苯甲酸,5-[[4-[(乙酰基氨基)磺酰]苯基]偶氮]-2-[[3-(三氟甲基)苯基]氨基]-(9CI)