摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

bis(triisopropyl-l5-phosphaneyl)osmium(VI) trihydride iodide | 155350-21-3

中文名称
——
中文别名
——
英文名称
bis(triisopropyl-l5-phosphaneyl)osmium(VI) trihydride iodide
英文别名
——
bis(triisopropyl-l5-phosphaneyl)osmium(VI) trihydride iodide化学式
CAS
155350-21-3
化学式
C18H45IOsP2
mdl
——
分子量
640.607
InChiKey
CUOIEMBXDGPJCX-UHFFFAOYSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    7.47
  • 重原子数:
    22.0
  • 可旋转键数:
    8.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为产物:
    描述:
    dihydrido(diiodo)osmium;tri(propan-2-yl)phosphane 、 氢气 在 (C2H5)3N 作用下, 生成 bis(triisopropyl-l5-phosphaneyl)osmium(VI) trihydride iodide
    参考文献:
    名称:
    Quantum Exchange Coupling:  A Hypersensitive Indicator of Weak Interactions
    摘要:
    Os(H)(3)ClL2 (L = (PPr3)-Pr-i) forms a 1:1 adduct with L' = PEt3, NH3, MeCN, acetone, methanol, and THF. The case L' = PEt3 permits the dearest identification of adduct structure as pentagonal bipyramidal. For NH3 and MeCN, the respective kinetics of L' loss are measured as Delta H-double dagger = 20.7(3) and 17.6(3) kcal/mol and Delta S-double dagger = 16(1) and 14.7(9) cal/(mol K). For acetone, methanol, and THF, the following respective Delta H degrees and Delta S degrees values for L' binding are measured: Delta H degrees = -10.4(1), -6.66(8), and -5.8(2) kcal/mol; Delta S degrees = -41.8(5), -25.5(3), and -33(1) cal/(mol K). Decoalesced H-1 NMR spectra are reported for several of these Os(H)(3)ClL2L' species, and they show a variety of examples of quantum exchange coupling among the hydride ligands. The values of J(e)x are higher when L' is a more weakly-binding ligand. The quantum exchange coupling constants of Os(H)(3)XL2 (X = Cl, Br, I, OCH2CF3, OCH(CF3)(2)) in CD2Cl2, in toluene, and in methylcyclohexane show an unprecedented decrease of J with increasing temperature, which is attributed to weak formation of Os(H)(3)Cl(solvent)L-2 adducts at low temperature. For L' = CO, adduct formation leads to liberation of coordinated H-2. Excess L' = MeCN or NH3 slowly leads to formation of [Os(H)(3)L'L-2(2)]Cl; the X-ray structure for L' = NH3 is reported. Crystal data (-171 degrees C): a = 11.561(4) Angstrom, b = 14.215(5) Angstrom, c = 8.851(3) Angstrom, alpha = 97.51(2)degrees, beta = 107.73(2)degrees, gamma = 104.47(2)degrees, with Z = 2 in space group . The potential energy was calculated for exchange of 2H of OsH3X(PH3)(2)L (X = Cl with L = no ligand and PH3, X = I with L = no ligand) using effective core potential ab initio methods at the MP2 level. The site exchange is found to be energetically easier for Cl than for I, in agreement with experiment. The hydride site exchange in the seven-coordinate species OsH3Cl(PH3)(3) (a model for coordination of either ligand or solvent to Os) is found to be easier than that in the 16-electron species. No dihydrogen ligand is located on the reaction path for site exchange. The current theory which relates quantum exchange to a tunneling effect was used for calculating J(ex) as a function of temperature. The dynamic study was done using several sets of coordinates, in particular the rotation angle phi and the internuclear distance r between the exchanging H. The vibrational levels have been calculated and the symmetry of each level assigned within the permutation group in order to determine the nature of the nuclear spin function associated with each level. It is found that the rotation, phi, gives rise to the largest tunneling effect but that r cannot be neglected. The influence of the temperature, J(ex)(T), was included by a Boltzmann distribution. The results are in qualitative agreement with experiment in that quantum exchange coupling is larger in the case of Cl than in the case of I. Additional ligand L increases the value of the quantum exchange coupling mostly by lowering the activation energy for pairwise exchange.
    DOI:
    10.1021/ja970603j
点击查看最新优质反应信息

同类化合物

顺-二氯双(三乙基膦)铂(II) 阿米福汀二钠 镍,二氯二[三(2-甲基丙基)膦]- 锗烷,1-十二碳烯基三乙基-,(Z)- 银(I)硒氰酸盐 铂(三乙基膦)4 钠二乙基硫代亚膦酸酯 钠二丁基膦基二硫代酸酯 鏻胆碱 酰氨酶 辛基次膦酸 辛基二丁基氧膦 辛基[二(2,4,4-三甲代戊基)]磷烷氧化 苯甲基亚磷酸二乙酯 膦美酸 膦基硫杂酰胺,N-[二(1-甲基乙基)硫膦基]-P,P-二(1-甲基乙基)- 膦二氯化,[3-氯-1-(氯甲基)-3-甲基丁基]- 膦二氯化,[1,2-二氯-2-[(1-甲基乙基)硫代]乙烯基]-,(E)- 膦,(1-甲基-1,2-乙二基)二[二(1-甲基乙基)- 脱叶磷 脱叶亚磷 羰基氯氢[双(2-二-异丙基膦酰基乙基)胺]钌(II) 羰基氯氢[二(2-二环己基膦基乙基)胺]钌(II) 羰基氯氢[二(2-二叔丁基膦乙基)胺]钌(II) 羟基-氧代-十四烷基鏻 磷酸三-(1-甲基-丁-3-烯基酯) 磷羧基硫酸,甲基-,S-丁基O-庚基酯(8CI,9CI) 磷羧基硫酸,甲基-,S-丁基O-己基酯(8CI,9CI) 磷氰酸根硫杂二酰胺(9CI) 磷,三丁基乙烯基-,溴化 磷,1,3-丙二基二[三辛基-,二溴化 碘化铜(I)三甲基亚磷酸络合物 碘化4-氯丁基锌 硫线磷 硫代磷酸二氢S-(2-氨基-2-甲基丙基)酯 硫代磷酸二氢 S-(3-氨基丙基)酯 硫代磷酸三(2-乙基己基)酯 硫代磷酸S-[2-[[3-(乙基氨基)丙基]氨基]乙基]酯 硫代磷酸S-[2-(二乙氧基亚膦酰氨基)乙基]O,O-二乙基酯 硫代磷酸S-[(1-氨基环戊基)甲基]酯 硫代磷酸S-(4-氯-2-丁烯-1-基)O,O-二乙酯 硫代磷酸S-(2,2-二氯乙烯基)O,O-二乙酯 硫代磷酸O-(2-甲氧基乙基)O-甲基S-(2-丙炔基)酯 硫代磷酸O-(2-乙氧基乙基)O-甲基S-(2-丙炔基)酯 硫代磷酸O,O-二甲基S-(2,2,2-三氯乙基)酯 硫代磷酸O,O-二乙基S-(3,4,4-三氟-3-丁烯基)酯 硫代磷酸O,O-二乙基S-(1,2,2-三氯乙基)酯 硫代磷酸3-((2-氨基乙基)氨基)丙硫醇S-酯 硫代磷酸,S-(1,1-二甲基乙基)O,O-二乙酯 硫代磷酸 O,S-二甲基酯钠盐