Dual Brønsted Acid/Nucleophilic Activation of Carbonylimidazole Derivatives
摘要:
Carbonylimidazole derivatives have been found to be highly active acylation reagents for esterification and amidation in the presence of pyridinium salts. These reactions are thought to involve both Bronsted acid and nucleophilic catalysis. This mode of activation has been applied to the synthesis of difficult to access oxazolidinones, as well as esters and amides. Finally, the use of pyridinium salts has been shown to accelerate the esterification of carboxylic acids with imidazole carbamates.
important amidyl radicals from N−H amides is an appealing and yet challenging task. Previous methods require a stoichiometric amount of a strong oxidant and/or a costly noble‐metal catalyst. We report herein the first electrocatalytic method that employs ferrocene (Fc), a cheap organometallic reagent, as the redox catalyst to produce amidyl radicals from N‐aryl amides. Based on this radical‐generating
The present invention relates to compounds according to Formula 1 and pharmaceutically acceptable salts, synthesis, intermediates, formulations, and methods of disease treatment therewith, including cancer, lymphocyte homing, chronic inflammation, neuropathic pain, fibrotic diseases, thrombosis, and cholestatic pruritus, mediated at least in part by ATX.
Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer
作者:David C. Miller、Gilbert J. Choi、Hudson S. Orbe、Robert R. Knowles
DOI:10.1021/jacs.5b09671
日期:2015.10.28
Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups.