Kinetic studies concerning the addition reactions of lithium diethylamide (Et2NLi) to several vinylsilane derivatives, such as H2C=CH–Si(CH3)2X [X: methyl, phenyl, ethoxy, 2-(diethylamino)ethyl and vinyl], and H2C=CH–Si(CH3)2OSi(CH3)2X [X: 2-(diethylamino)ethyl and vinyl], were carried out. The reactivity of vinylsilane derivatives toward nucleophile was strongly influenced by the nature of the substituents on the Si atom. The reactivity of trimethylvinylsilane [rate constant k (trimethylvinylsilane; cHx; 50 °C) = 2.9 ± 0.2 · 10−4 dm3 mol−1 s−1] was found to be of the same order of magnitude as that of para-alkyl-substituted styrenes, such as 4-methylstyrene [k (4-methylstyrene; cHx; 50 °C) = 3.2 · 10−4 dm3 mol−1 s−1]. The reactivities of vinylsilane compounds having an aryl substituent, e.g. dimethylphenylvinylsilane [k (dimethylphenylvinylsilane; cHx; 50 °C) = 14.8 ± 0.3 · 10−4 dm3 mol−1 s−1] and dimethyldivinylsilane [k (dimethyldivinylsilane; cHx; 50 °C) = 14.8 ± 0.6 · 10−4 dm3 mol−1 s−1], were higher than that of trialkyl-substituted vinylsilane. This fact may be explained by a π-conjugation between the phenyl (or vinyl) and vinyl groups through an empty d-orbital of the Si atom. A vinylsilane compound having a 2-(dialkylamino)ethyl substituent, [2-(diethylamino)ethyl]dimethylvinylsilane, showed unique reactivity toward lithium diethylamide, indicating that the β-nitrogen atom plays an important role regarding the reactivity of the vinyl group. In the reaction between lithium diethylamide and vinylsilane having an ethoxyl group, an addition reaction to the vinyl group and a cleavage reaction of the Si–O linkage proceeded concurrently. No cleavage reaction, however, proceeded in the reaction of lithium diethylamide with vinylsilane compounds having a disiloxane linkage. 1,1,3,3-Tetramethyl-1,3-divinyldisiloxane exhibited a much higher reactivity than did the other vinylsilane compounds.
                                    对
二乙基酰胺
锂(Et2NLi)与几种
乙烯基硅烷衍
生物(如 H2C=CH-Si(
CH3)2X [X:甲基、苯基、乙氧基、2-(
二乙基氨基)乙基和
乙烯基],以及 H2C=CH-Si(   )2OSi(   )2X [X:2-(
二乙基氨基)乙基和
乙烯基])的加成反应进行了动力学研究。
乙烯基硅烷衍
生物对亲核物的反应性受到
硅原子上取代基性质的强烈影响。研究发现,三甲基
乙烯基硅烷的反应活性[速率常数 k(三甲基
乙烯基硅烷;cHx;50 °C)= 2.9 ± 0.2 - 10-4 dm3 mol-1 s-1]与对烷基取代的
苯乙烯(如 4-
甲基苯乙烯)的反应活性[k(4-
甲基苯乙烯;cHx;50 °C)= 3.2 - 10-4 dm3 mol-1 s-1]处于同一数量级。具有芳基取代基的
乙烯基硅烷化合物的反应活性,例如二甲基苯基
乙烯基硅烷 [k (dimethylphenylvinylsilane; cHx; 50 °C) = 14.8 ± 0.3 - 10-4 dm3 mol-1 s-1] 和二甲基二
乙烯基硅烷 [k (dimethyldivinylsilane; cHx; 50 °C) = 14.8 ± 0.6 - 10-4 dm3 mol-1 s-1] 均高于三烷基取代的
乙烯基硅烷。这可能是因为苯基(或
乙烯基)和
乙烯基通过 Si 原子的空 d 轨道发生了 π 共轭作用。具有 2-(二烷基
氨基)乙基取代基的
乙烯基硅烷化合物--[2-(
二乙基氨基)乙基]二甲基
乙烯基硅烷对
二乙基酰胺
锂显示出独特的反应活性,这表明β-氮原子对
乙烯基的反应活性起着重要作用。在
二乙基酰胺
锂和带有乙氧基的
乙烯基硅烷的反应中,
乙烯基的加成反应和 Si-O 连接的裂解反应同时进行。然而,在
二乙基酰胺
锂与具有二
硅氧烷连接的
乙烯基硅烷化合物的反应中,没有发生裂解反应。1,1,3,3-四甲基-1,3-二
乙烯基二
硅氧烷的反应活性远远高于其他
乙烯基硅烷化合物。