摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

dehydrorabelomycin | 30954-70-2

中文名称
——
中文别名
——
英文名称
dehydrorabelomycin
英文别名
6-hydroxytetrangulol;1,6,8-trihydroxy-3-methylbenzo[a]anthracene-7,12-dione
dehydrorabelomycin化学式
CAS
30954-70-2
化学式
C19H12O5
mdl
——
分子量
320.301
InChiKey
PQVIKROZFPIERS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    609.8±50.0 °C(Predicted)
  • 密度:
    1.564±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    4
  • 重原子数:
    24
  • 可旋转键数:
    0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.05
  • 拓扑面积:
    94.8
  • 氢给体数:
    3
  • 氢受体数:
    5

SDS

SDS:c8712345202ec0bd8ec4379792b77f43
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    dehydrorabelomycin 在 glucose-6-phosphate dehydrogenase 、 D-葡萄糖-6-磷酸 、 GilM O-methyltransferase 、 GilMT O-methyltransferase 、 GilOII oxygenase 、 GilR oxido reductase 、 S-adenosylmethionine 、 还原型辅酶II(NADPH)四钠盐腺嘌呤黄素 、 magnesium chloride 作用下, 以 为溶剂, 反应 8.0h, 以80%的产率得到defucogilvocarcin M
    参考文献:
    名称:
    Defucogilvocarcin M 的酶促全合成及其对 Gilvocarcin 生物合成的影响
    摘要:
    团队合作:Defucogilvocarcin M(1,见方案)是通过一锅法合成的,由乙酰辅酶A和丙二酰辅酶A通过15种酶的组合从乙酰辅酶A和丙二酰辅酶A中合成,并结合了从大肠杆菌中获得的15种酶以及gilvocarcin、jadomycin和ravidomycin生物合成途径。酶的混合物被系统地减少和改变,以进一步描绘 gilvocarcin 生物合成的复杂的聚酮化合物后步骤中的反应顺序。
    DOI:
    10.1002/anie.201105882
  • 作为产物:
    描述:
    三氯化铝 、 palladium diacetate 、 乙硫醇 作用下, 以 乙腈 为溶剂, 反应 14.0h, 生成 dehydrorabelomycin
    参考文献:
    名称:
    A General Approach to Angucyclines: Synthesis of Hatomarubigin A, Rubiginone B2, Antibiotic X-1488E, 6-Hydroxytetrangulol, and Tetrangulol
    摘要:
    Hatomarubigin A was prepared in 41% yield in a single procedure from acyl naphthoquinone 15 and 5-methylcyclohexane-1,3-dione (16). The net reaction consists of Michael addition to an acyl quinone followed by intramolecular aldol condensation. Hatomarubigin A then served as a common intermediate in syntheses of the angucyclinone antibiotics rubiginone B2, antibiotic X-1488E, 6-hydroxy-tetrangulol, and tetrangulol. (C) 2000 Elsevier Science Ltd. All rights reserved.
    DOI:
    10.1016/s0040-4020(00)00869-3
点击查看最新优质反应信息

文献信息

  • Production of Stealthin C Involves an S–N-Type Smiles Rearrangement
    作者:Peng Wang、Gloria J. Hong、Matthew R. Wilson、Emily P. Balskus
    DOI:10.1021/jacs.6b10586
    日期:2017.3.1
    monooxygenase AlpJ, can generate these metabolites from N-acetyl-l-cysteine and l-cysteine, respectively, and that the synthesis of stealthin C likely proceeds via a nonenzymatic S-N-type Smiles rearrangement. This unexpected route to stealthin C reveals a distinct approach to install aromatic amino groups in metabolites and raises questions about the intermediacy of this species in kinamycin production
    芳香族聚酮天然产物的运动霉素家族含有被重氮基团取代的非典型安古环素环系统。构建这两种结构特征所涉及的酶化学在很大程度上尚未被探索。在此,我们报告了 Seongomycin(该途径的一种分流产物)和 Stevethin C(一种建议的运动霉素生物合成前体)的体内和体外生产情况。我们证明,黄素依赖性单加氧酶 AlpJ 可以分别从 N-乙酰基-L-半胱氨酸L-半胱氨酸生成这些代谢物,并且隐形 C 的合成可能是通过非酶促 SN 型 Smiles 重排进行的。这种意想不到的隐形 C 途径揭示了一种在代谢物中安装芳香基的独特方法,并引发了关于该物种在运动霉素生产中的中间作用的问题。
  • Characterization of JadH as an FAD- and NAD(P)H-Dependent Bifunctional Hydroxylase/Dehydrase in Jadomycin Biosynthesis
    作者:Yihua Chen、Keqiang Fan、Yongzhi He、Xinping Xu、Yanfeng Peng、Tingting Yu、Cuijuan Jia、Keqian Yang
    DOI:10.1002/cbic.201000178
    日期:——
    Biosynthesis of angucyclines: We characterized an accessory enzyme, JadH as a FAD and NAD(P)H‐dependent bifunctional hydroxylase/dehydrase involved in jadomycin biosynthesis by identifying its real product. Homologues of JadH have been found in all cloned angucycline biosynthetic clusters and were proposed to have similar functions as JadH.
    Angucyclines的生物合成:我们鉴定了辅助酶JadH作为FAD和依赖Jadomycin生物合成的NAD(P)H依赖性双功能羟化酶/脱酶,方法是鉴定其真实产物。已在所有克隆的环霉素生物合成簇中发现了JadH的同系物,并被认为具有与JadH类似的功能。
  • Processes and host cells for genome, pathway, and biomolecular engineering
    申请人:enEvolv, Inc.
    公开号:US10370654B2
    公开(公告)日:2019-08-06
    The present disclosure provides compositions and methods for genomic engineering.
    本公开提供了基因组工程的组合物和方法。
  • Baeyer–Villiger C–C Bond Cleavage Reaction in Gilvocarcin and Jadomycin Biosynthesis
    作者:Nidhi Tibrewal、Pallab Pahari、Guojun Wang、Madan K. Kharel、Caleb Morris、Theresa Downey、Yanpeng Hou、Tim S. Bugni、Jürgen Rohr
    DOI:10.1021/ja3081154
    日期:2012.11.7
    GilOII has been unambiguously identified as the key enzyme performing the crucial C-C bond cleavage reaction responsible for the unique rearrangement of a benz[a]anthracene skeleton to the benzo[d]-naphthopyranone backbone typical of the gilvocarcin-type natural anticancer antibiotics. Further investigations of this enzyme led to the isolation of a hydroxyoxepinone intermediate, leading to important conclusions regarding the cleavage mechanism.
  • Tailoring Enzymes Involved in the Biosynthesis of Angucyclines Contain Latent Context-Dependent Catalytic Activities
    作者:Pekka Patrikainen、Pauli Kallio、Keqiang Fan、Karel D. Klika、Khaled A. Shaaban、Pekka Mäntsälä、Jürgen Rohr、Keqian Yang、Jarmo Niemi、Mikko Metsä-Ketelä
    DOI:10.1016/j.chembiol.2012.04.010
    日期:2012.5
    Comparison of homologous angucycline modification enzymes from five closely related Streptomyces pathways (pga, cab, lad, urd, lan) allowed us to deduce the biosynthetic steps responsible for the three alternative outcomes: gaudimycin C, dehydrorabelomycin, and 11-deoxylandomycinone. The C-12b-hydroxylated urdamycin and gaudimycin metabolites appear to be the ancestral representatives from which landomycins and jadomysins have evolved as a result of functional divergence of the ketoreductase LanV and hydroxylase JadH, respectively. Specifically, LanV has acquired affinity for an earlier biosynthetic intermediate resulting in a switch in biosynthetic order and lack of hydroxyls at C-4a and C-12b, whereas in JadH, C-4a/C-12b dehydration has evolved into an independent secondary function replacing C-12b hydroxylation. Importantly, the study reveals that many of the modification enzymes carry several alternative, hidden, or ancestral catalytic functions, which are strictly dependent on the biosynthetic context.
查看更多

同类化合物

酒色霉素 A1 萘并[1,2-b]菲-7,14-二酮 苯并蒽-7,12-二酮 腊伯罗霉素 浅内红霉素 水绫霉素 棣棠霉素 C 抑胃酶氨酰-21 富士霉素A 四角霉素 丙酸,2-甲基-,(3R,4S)-1,2,3,4,7,12-六氢-8-甲氧基-3-甲基-1,7,12-三羰基苯并[a]蒽-4-基酯 丁二酸,碘-,4-乙基1-甲基酯(9CI) N-{4-[(4-吡啶-2-基哌嗪-1-基)羰基]苯基}-7-(三氟甲基)喹啉-4-胺 8-羟基-3-甲基-3,4-二氢-1,7,12(2H)-苯并[a]蒽三酮 8-甲氧基-3-甲基-3,4-二氢-1,7,12(2H)-四苯e三酮 8,11-二[2-(2-羟基乙基氨基)乙基氨基]-6-甲氧基-1,2,3,4-四氢苯并[a]蒽-7,12-二酮 4a,8,12b-三羟基-4-甲基-1H-苯并[a]蒽-2,7,12-三酮 3-甲氧基苯并(a)蒽-7,12-二酮 1,3-二羟基-8-甲氧基-3-甲基-2,4-二氢-1H-苯并[a]蒽-7,12-二酮 (R)-8-羟基-3-甲基-1,2,3,4-四氢苯并[a]蒽-7,12-二酮 (3S)-6-羟基-8-甲氧基-3-甲基-3,4-二氢-2H-苯并[a]蒽-1,7,12-三酮 (3S)-3-甲基-8-[(2S,3R,4R,5R,6S)-3,4,5-三羟基-6-甲基四氢吡喃-2-基]氧基-3,4-二氢-2H-苯并[a]蒽-1,7,12-三酮 (3S)-11-羟基-8-甲氧基-3-甲基-3,4-二氢-2H-苯并[a]蒽-1,7,12-三酮 (3R)-9-[(2R,4R,5R,6R)-4-[(2S,5S,6S)-5-[(2S,4R,5S,6R)-4,5-二羟基-6-甲基四氢吡喃-2-基]氧基-6-甲基四氢吡喃-2-基]氧基-5-羟基-6-甲基四氢吡喃-2-基]-3,8-二羟基-3-甲基-2,4-二氢苯并[b]菲-1,7,12-三酮 (2S,4S,5S)-4-[(1E,3E,5E)-7-[(2R,6R)-6-[(2R,3S,4aR,12bS)-2,3,4A,8,12B-五羟基-3-甲基-1,7,12-三氧代-2,4-二氢苯并[h]菲-9-基]-2-甲基四氢吡喃-3-基]氧基-7-氧代庚-1,3,5-三烯基]-2,5-二甲基-1,3-二氧戊环-2-羧酸 (2R,3S,4aR,12bS)-2,3,4a,8,12b-五羟基-3-甲基-3,4,4a,12b-四氢-1,7,12(2H)-四苯e三酮 (1S,3S)-10-[[(1S,3S)-1,11-二羟基-8-甲氧基-3-甲基-7,12-二氧代-1,2,3,4-四氢苯并[h]菲-10-基]甲基]-1,11-二羟基-8-甲氧基-3-甲基-1,2,3,4-四氢苯并[B]菲-7,12-二酮 (1S,3S)-1-羟基-8-甲氧基-3-甲基-1,2,3,4-四氢苯并[a]蒽-7,12-二酮 (-)-8-O-甲基四角霉素 (1S,3S)-1-hydroxy-8-methoxy-3-methyl-11-(2',3',4',6'-tetra-O-acetyl-β-D-glucopyranosyloxy)-1,2,3,4-tetrahydrobenz[a]anthracene-7,12-dione 1,2,3,4,5,6-Tribenzofluorenon 5,12-Naphthacenedione,7,8,9,10-tetrahydro-6,10-dihydroxy-1-methoxy-8-methylene- 2,6-dimethyl-benz[a]anthracene-7,12-dione 1-methyl-pleiadene-7,12-dione 9-chloro-benz[a]anthracene-7,12-dione 6,11-dioxo-6,11-dihydro-anthra[1,2-b]selenophene-2-carboxylic acid 9-(1,1-Dimethoxy-ethyl)-6,7,11-trihydroxy-naphthacene-5,12-dione [(1S,21S,22R)-11-methyl-6,17-dioxo-24-oxa-20-azahexacyclo[19.3.1.02,19.05,18.07,16.08,13]pentacosa-2(19),3,5(18),7(16),8(13),9,11,14-octaen-22-yl] acetate [(1S,21S,22S)-11-methyl-6,17-dioxo-24-oxa-20-azahexacyclo[19.3.1.02,19.05,18.07,16.08,13]pentacosa-2(19),3,5(18),7(16),8(13),9,11,14-octaen-22-yl] acetate 5-methoxybenzanthracene-7,12-dione 4-methoxydibenzanthracene-7,14-dione N-acetyl-6-phenylamino-5,12-naphthacenequinone 6-methyl-1,2,3,4-tetrahydro-benz[a]anthracene-7,12-dione 9-Fluoro-benzo[a]anthracene-7,12-dione [(1R,21R,22S)-11-methyl-6,17-dioxo-24-oxa-20-azahexacyclo[19.3.1.02,19.05,18.07,16.08,13]pentacosa-2(19),3,5(18),7(16),8(13),9,11,14-octaen-22-yl] acetate (1S,21S,22R)-22-hydroxy-11-methyl-24-oxa-20-azahexacyclo[19.3.1.02,19.05,18.07,16.08,13]pentacosa-2(19),3,5(18),7(16),8(13),9,11,14-octaene-6,17-dione (1R,21R,22S)-22-hydroxy-11-methyl-24-oxa-20-azahexacyclo[19.3.1.02,19.05,18.07,16.08,13]pentacosa-2(19),3,5(18),7(16),8(13),9,11,14-octaene-6,17-dione (1S,21S,22S)-22-hydroxy-11-methyl-24-oxa-20-azahexacyclo[19.3.1.02,19.05,18.07,16.08,13]pentacosa-2(19),3,5(18),7(16),8(13),9,11,14-octaene-6,17-dione methyl 11-hydroxy-6-methoxy-12-oxo-5,7,8,9,10,12-hexahydrotetracene-5-carboxylate (1R,21R,22R)-22-hydroxy-11-methyl-24-oxa-20-azahexacyclo[19.3.1.02,19.05,18.07,16.08,13]pentacosa-2(19),3,5(18),7(16),8(13),9,11,14-octaene-6,17-dione