摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

6,7-dichloro-2,3,9,9a-tetrahydro-1H-pyrrolo[1,2-a]azepine-5,8-dione | 346701-48-2

中文名称
——
中文别名
——
英文名称
6,7-dichloro-2,3,9,9a-tetrahydro-1H-pyrrolo[1,2-a]azepine-5,8-dione
英文别名
7,8-dichloro-1,2,3,9a-tetrahydropyrrolo[1,2-a]azepine-6,9-dione;6,7-dichloro-2,3-dihydro-1H-pyrrolo[1,2-a]azepine-5,8(9H,9aH)-dione;1H-Pyrrolo[1,2-a]azepine-5,8-dione, 6,7-dichloro-2,3,9,9a-tetrahydro-
6,7-dichloro-2,3,9,9a-tetrahydro-1H-pyrrolo[1,2-a]azepine-5,8-dione化学式
CAS
346701-48-2
化学式
C9H9Cl2NO2
mdl
——
分子量
234.082
InChiKey
WTGWHRNGVGGFDV-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    149-150 °C
  • 沸点:
    361.1±42.0 °C(Predicted)
  • 密度:
    1.48±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    14
  • 可旋转键数:
    0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.56
  • 拓扑面积:
    37.4
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    6,7-dichloro-2,3,9,9a-tetrahydro-1H-pyrrolo[1,2-a]azepine-5,8-dione溶剂黄146 作用下, 反应 1.83h, 以90%的产率得到hexahydropyrrolo[1,2-a]azepine-5,8-dione
    参考文献:
    名称:
    N-烯基取代马来酰亚胺的分子内光环加成:快速构建全氢氮杂苁烯生物碱的潜在工具
    摘要:
    许多 N-链烯基取代的马来酰亚胺衍生物的紫外线照射导致以极好的产率形成复杂的全氢氮杂茚。整个过程可以被认为是一个正式的分子内 [5+2] 环加成。通过合适的烯醇与各种马来酰亚胺的Mitsunobu偶联制备底物。烯基侧链的甲基取代以良好的产率得到环加合物 13a-g,分别对 13e 和 13g 观察到中等至高的立体选择性。在大多数情况下,环状烯烃侧链的使用导致形成具有高度立体选择性的三环和四环产物。一些已制备的多环系统构成了许多复杂生物碱的核心骨架。
    DOI:
    10.1002/1099-0690(200104)2001:8<1473::aid-ejoc1473>3.0.co;2-w
  • 作为产物:
    描述:
    3,4-dichloro-1-(pent-4-en-1-yl)-1H-pyrrole-2,5-dione乙腈 为溶剂, 反应 1.0h, 以64%的产率得到6,7-dichloro-2,3,9,9a-tetrahydro-1H-pyrrolo[1,2-a]azepine-5,8-dione
    参考文献:
    名称:
    合成有机光化学中的反应控制:环加成的[5 + 2]和[2 + 2]模式之间的切换
    摘要:
    人格分裂:已开发出能够有效控制马来酰亚胺中光环加成模式的反应条件。直接辐射有利于[5 + 2]模式,而敏化辐射则允许完全切换到[2 + 2]模式(请参阅方案; TBS =叔丁基二甲基甲硅烷基)。
    DOI:
    10.1002/anie.200904059
点击查看最新优质反应信息

文献信息

  • Reaction Control in Synthetic Organic Photochemistry: Switching between [5+2] and [2+2] Modes of Cycloaddition
    作者:Claudio Roscini、Kara L. Cubbage、Malcolm Berry、Andrew J. Orr-Ewing、Kevin I. Booker-Milburn
    DOI:10.1002/anie.200904059
    日期:2009.11.2
    Split personality: Reaction conditions that enable powerful control over the mode of photocycloaddition in maleimides have been developed. Direct irradiation favors the [5+2] mode whereas sensitized irradiation allows a complete switch to the [2+2] mode (see scheme; TBS=tert‐butyldimethylsilyl).
    人格分裂:已开发出能够有效控制马来酰亚胺中光环加成模式的反应条件。直接辐射有利于[5 + 2]模式,而敏化辐射则允许完全切换到[2 + 2]模式(请参阅方案; TBS =叔丁基二甲基甲硅烷基)。
  • Reaction Optimization and Mechanism in Maleimide [5 + 2] Photocycloaddition:  A Dual Approach Using Tunable UV Lasers and Time-Dependent DFT
    作者:David M. E. Davies、Craig Murray、Malcolm Berry、Andrew J. Orr-Ewing、Kevin I. Booker-Milburn
    DOI:10.1021/jo062316g
    日期:2007.2.1
    An in-depth study of the intramolecular [5 + 2] photocycloaddition of maleimides using tunable UV lasers has demonstrated that the peak in quantum yield and rate both occur at wavelengths some 50 nm red shifted from the maxima observed in the UV spectra. A detailed explanation for these findings using time-dependent DFT calculations is presented, and the implications for a previously adopted mechanism
    使用可调紫外激光对马来酰亚胺的分子内[5 + 2]光环加成进行的深入研究表明,量子产率和速率的峰值均出现在从UV光谱中观察到的最大值偏离约50 nm的红色波长处。提出了使用依赖于时间的DFT计算对这些发现的详细解释,并讨论了对先前采用的机制的含义。
  • A Practical Flow Reactor for Continuous Organic Photochemistry
    作者:Benjamin D. A. Hook、Wolfgang Dohle、Paul R. Hirst、Mark Pickworth、Malcolm B. Berry、Kevin I. Booker-Milburn
    DOI:10.1021/jo050705p
    日期:2005.9.1
    Compact flow reactors have been constructed and optimized to perform continuous organic photochemistry on a large scale. The reactors were constructed from commercially available or customized immersion well equipment combined with LTV-transparent, solvent-resistant fluoropolymer (FEP) tubing. The reactors were assessed using the [2 + 2] photocycloaddition of malemide 1 and 1-hexyne forming the cyclobutene product 2 and the intramolecular [5 + 21 photocycloaddition of 3,4-dimethyl-1-pent-4-enylpyrrole-2,5-dione 3 to form the bicyclic azepine 4. The reactors were shown to be capable of producing > 500 g of 2 and 175 g of 4 in a continuous 24 h processing period. Due to the facile control of irradiation time, the continuous flow reactor was also shown to be superior to a batch reactor for performing a problematic photochemical reaction on a larger scale.
  • Batch versus Flow Photochemistry: A Revealing Comparison of Yield and Productivity
    作者:Luke D. Elliott、Jonathan P. Knowles、Paul J. Koovits、Katie G. Maskill、Michael J. Ralph、Guillaume Lejeune、Lee J. Edwards、Richard I. Robinson、Ian R. Clemens、Brian Cox、David D. Pascoe、Guido Koch、Martin Eberle、Malcolm B. Berry、Kevin I. Booker-Milburn
    DOI:10.1002/chem.201404347
    日期:2014.11.10
    The use of flow photochemistry and its apparent superiority over batch has been reported by a number of groups in recent years. To rigorously determine whether flow does indeed have an advantage over batch, a broad range of synthetic photochemical transformations were optimized in both reactor modes and their yields and productivities compared. Surprisingly, yields were essentially identical in all
    近年来,许多小组已经报道了使用流动光化学及其明显优于批次的优势。为了严格确定流量是否确实比批次具有优势,在两种反应器模式下都对各种合成光化学转化进行了优化,并比较了它们的产率和生产率。出人意料的是,在所有比较情况下,产量基本相同。更加揭示的是,当关键反应参数相匹配时,流动反应器的生产率与其批次反应器的生产率变化很小。单层氟化乙烯丙烯(FEP)的平均生产率比间歇法低20%,而三层反应器的平均生产率高20%。最后,
  • Intramolecular Photocycloaddition ofN-Alkenyl Substituted Maleimides: A Potential Tool for the Rapid Construction of Perhydroazaazulene Alkaloids
    作者:Kevin I. Booker-Milburn、Christopher E. Anson、Cole Clissold、Nicola J. Costin、Richard F. Dainty、Martin Murray、Dhiren Patel、Andrew Sharpe
    DOI:10.1002/1099-0690(200104)2001:8<1473::aid-ejoc1473>3.0.co;2-w
    日期:2001.4
    to high stereoselectivity being observed for 13e and 13g, respectively. Use of cyclic alkene side chains led to the formation of tri- and tetracyclic products with high degrees of stereoselectivity in most cases. Some of the polycyclic ring systems that were prepared constitute the core skeleton of a number of complex alkaloids. The substrate 29 underwent an unexpected [2+2] photocycloaddition to yield
    许多 N-链烯基取代的马来酰亚胺衍生物的紫外线照射导致以极好的产率形成复杂的全氢氮杂茚。整个过程可以被认为是一个正式的分子内 [5+2] 环加成。通过合适的烯醇与各种马来酰亚胺的Mitsunobu偶联制备底物。烯基侧链的甲基取代以良好的产率得到环加合物 13a-g,分别对 13e 和 13g 观察到中等至高的立体选择性。在大多数情况下,环状烯烃侧链的使用导致形成具有高度立体选择性的三环和四环产物。一些已制备的多环系统构成了许多复杂生物碱的核心骨架。
查看更多

同类化合物

环戊二烯并[4,5]氮杂卓并[2,1,7-cd]吡咯里嗪 吡咯并[1,2-a]氮杂-5-酮 六氢-1H-吡咯并[1,2-A]氮杂卓-5(6H)-酮 N,N-二甲基-3-(3-甲基-1,2,4,5-四氢氮杂卓并[4,5-b]吲哚-6-基)丙-1-胺 9-氟-1,2,3,4,5,6-六氢氮杂卓并[4,5-b]吲哚 7,8-二氢-5H-吡咯并[1,2-A]氮杂环庚烷-9(6H)-酮 6-叔-丁基3A-乙基八氢吡咯并[2,3-D]氮杂卓-3A,6(2H)-二甲酸基酯 6,7-二氢吡咯并[2,3-c]氮杂卓-4,8(1H,5H)-二酮 5H-吡咯并[1,2-a]氮杂卓-7-醇 5,9:7,11-二亚甲基-5H-吡咯并[1,2-a]吖壬英-3-羧酸,6,7,8,9,10,11-六氢-,甲基酯 4-(2-氨基-1H-咪唑-5-基)-2,3-二溴-6,7-二氢吡咯并[2,3-c]氮杂卓-8(1H)-酮 4-(2-氨基-1H-咪唑-4-基)-2,3-二溴-4,5,6,7-四氢吡咯并[2,3-c]氮杂卓-8(1H)-酮 4-(2-氨基-1,5-二氢-5-氧代-4H-咪唑-4-亚基)-4,5,6,7-四氢-吡咯并[2,3-c]氮杂卓-8(1H)-酮 3-苄基-1,2,3,4,5,6-六氢氮杂卓并[4,5-b]吲哚 3-(3,9-二甲基-1,2,4,5-四氢氮杂卓并[4,5-b]吲哚-6-基)-N,N-二甲基丙烷-1-胺 2H,3H-氧杂环丁烷并[3,2-d]吡咯并[1,2-a]氮杂卓 2-溴-6,7-二氢-1h,5h-吡咯并[2,3-c]氮杂烷-4,8-二酮 2,5-已炔二醇 2,3,4,5-四氢-N,N-二甲基-2-(3,4,5-三甲氧基苯甲酰基)-氮杂卓并(3,4-b)吲哚-10(1H)-丙胺 11-氧杂-3,10-二氮杂三环[7.2.1.03,7]十二碳-1,4,6,9-四烯 1,4,5,6,7,8-六氢吡咯并[3,2-b]氮杂卓 1,2,3,4,5,6-六氢氮杂环庚烷[4,3-B]吲哚盐酸盐 1,2,3,4,5,6-六氢-9-甲基氮杂卓并[4,5-b]吲哚 1,2,3,4,5,6-六氢-6-甲基氮杂革[4,5-b]吲哚盐酸盐 1,2,3,4,5,6-六氢-3-甲基氮杂卓并[4,5-b]吲哚 (1R*,2E,11S*)-2-(cyclohexylmethylene)-1-(phenylsilyl)methyloctahydropyrrolo[1,2-a]azepine (R)-2-(6,7,8,9-tetrahydro-5H-pyrrolo[1,2-a]azepin-9-yl)-acetaldehyde curvulamine (3aR,8aS)-tert-butyl octahydropyrrolo[3,4-d]azepine-2(1H)-carboxylate hydrochloride tert-butyl 6-(2-amino-2-oxoethyl)-1,4,5,6-tetrahydroazepino[4,5-b]indole-3(2H)-carboxylate 3-benzoyl-10-bromo-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole 3-(tert-butyloxycarbonyl)-10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole 1,2,3,4,5,6-hexahydro-3-dimethylaminoethyl-5-hydroxymethylazepino[4,5-b]indole 1,2,3,4,5,6-hexahydro-3-dimethylaminoethyl-5-hydroxymethyl-6-methylazepino[4,5-b]indole (Z)-2,3,9,9a-tetrahydro-6,6-dimethyl-9-methylene-8-vinyl-1H-pyrrolo[1,2-a]azepin-5(6H)-one 2,3,4,5,6,7-hexahydro-1H-3a,8,13,13b-tetraazabenzo[b]cyclopenta[1,2,3-jk]fluorene 2,3,4,5,6,7-hexahydro-1H-3a,8,11,11b-tetraazacyclohepta[1,2,3-jk]fluorene 1-Benzyloxy-2-methoxy-7,8,9,10-tetrahydro-6H-azepino<1,2-a>indole-11-carbaldehyde 3-benzoyl-10-(2-propoxyphenyl)-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole 2-phenyl-2,4,5,6-tetrahydro-1H-6-azabenzo[a]cyclohepta[cd]azulen-1-one 2-carbetoxy-3-(N,N-dimethyl)aminomethyleneamino-8-oxo-8H-4,5,6,7-tetrahydropyrrolo<2,3-c>azepine 3-benzoyl-10-[2-(trifluoromethyl)phenyl]-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole 3-benzoyl-10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4,5,6-hexahydroazepino[4,5-b]indole 6-[2-(4-fluorophenyl)ethyl]-3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one 5-(2-hydroxy-3-morpholin-4-yl-propyl)-3-methyl-4-oxo-1,4,5,6,7,8-hexahydro-pyrrolo[3,2-c]azepine-2-carbaldehyde 6-(2-phenylethyl)-3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one 11-(tert-butyldimethylsilyloxy)-1-trimethylsilyl-3a,4,11,12-tetrahydro-3H-cyclopenta[5,6]azepine[1,2-a]indole-2-one tert-butyl 8,9-dichloro-6-[2-(2,3-dimethylanilino)-2-oxoethyl]-1,4,5,6-tetrahydroazepino[4,5-b]indole-3(2H)-carboxylate tert-butyl 9,10-dichloro-6-[2-(2,3-dimethylanilino)-2-oxoethyl]-1,4,5,6-tetrahydroazepino[4,5-b]indole-3(2H)-carboxylate tert-butyl (1R,4S)-1-(benzylcarbamoyl)-3-oxo-2-((S)-1-phenylethyl)-1,2,3,4,5,10-hexahydroazepino[3,4-b]indol-4-ylcarbamate