摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

NADH

中文名称
——
中文别名
——
英文名称
NADH
英文别名
NAD+;beta-NADH;[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl] [(2R,3S,4R,5R)-5-(3-carbamoyl-4H-pyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate
NADH化学式
CAS
——
化学式
C21H27N7O14P2
mdl
——
分子量
663.431
InChiKey
BOPGDPNILDQYTO-NNYOXOHSSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -5.9
  • 重原子数:
    44
  • 可旋转键数:
    11
  • 环数:
    5.0
  • sp3杂化的碳原子比例:
    0.52
  • 拓扑面积:
    323
  • 氢给体数:
    6
  • 氢受体数:
    19

反应信息

  • 作为反应物:
    描述:
    NADH 生成 (R)-Nadhx(2-)
    参考文献:
    名称:
    Metabolite damage and its repair or pre-emption
    摘要:
    代谢物和辅助因子可通过杂乱的酶和自发的化学反应转化为不需要的化合物。纠正或防止这些反应的酶越来越多,它们与防止 DNA 和蛋白质损伤的酶类似,在维持体内平衡和预防疾病方面发挥着重要作用。 越来越多的事实证明,代谢物会受到各种损伤,所有生物体都会发生这种损伤,而且细胞有专门的损伤修复和抑制系统。首先,化学生物学证明,各种代谢物会因 "杂乱 "酶的副反应或自发化学反应而受损,其产物是无用的或有毒的,这些产物的无节制积累会造成毁灭性后果。其次,来自原核生物和真核生物的基因和基因组证据表明,有一种新的、保守的酶网络可以修复受损的代谢物,或以某种方式预先防止损害。代谢物(即小分子)修复类似于大分子(DNA 和蛋白质)修复,从比较基因组学证据来看,似乎同样普遍。比较基因组学还表明,代谢物修复可能是许多缺乏已知活性的保守蛋白家族的功能。细胞如何以及如何很好地处理代谢物损伤影响着从医学遗传学到代谢工程等各个领域。
    DOI:
    10.1038/nchembio.1141
  • 作为产物:
    描述:
    β-烟酰胺腺嘌呤二核苷酸L-谷氨酸 作用下, 以 为溶剂, 生成 NADH
    参考文献:
    名称:
    将功能性酶定点固定在聚苯乙烯纳米颗粒上† ‡
    摘要:
    将蛋白质固定在纳米颗粒上具有许多应用,从生物催化到生物药物的细胞递送。在这里,我们描述了磷酸泛肽基转移酶(斯普夫)催化的方法,将带有12-mer“ ybbR”小标签的蛋白质固定在用 辅酶A。这斯普夫-将蛋白催化固定在纳米颗粒上是一种高效的一步反应,该反应在温和条件下进行,并导致均匀分布的蛋白质共价和位点特异性地附着在纳米颗粒表面。使用这种方法将几种对生物催化感兴趣的酶(包括芳基丙二酸脱羧酶(AMDase)和谷氨酸消旋酶(GluR))固定在纳米颗粒上。这些酶保持其活性并在固定后显示出高的操作稳定性。
    DOI:
    10.1039/b916773k
  • 作为试剂:
    描述:
    甲基环戊烯醇酮 在 Chr-OYE1 (old yellow enzyme from chryseobacterium sp. CA49) 、 NADH 作用下, 以 aq. phosphate buffer 为溶剂, 反应 0.03h, 生成 2-甲基环戊酮
    参考文献:
    名称:
    Two “classical” Old Yellow Enzymes from Chryseobacterium sp. CA49: Broad substrate specificity of Chr-OYE1 and limited activity of Chr-OYE2
    摘要:
    Two putative Old Yellow Enzyme (OYE) homologues, Chr-OYE1 and Chr-OYE2, were identified from the genome of Chryseobacterium sp. CA49 as new members of the "classical" subfamily. Chr-OYE1 and Chr-OYE2 were most closely related to the SYE4 from Shewanella oneidensis and NerA from Agrobacterium radiobacter with 41% and 45% identity, respectively. Both enzymes were expressed in Escherichia coli in soluble form, but their catalytic abilities as ene-reductases were quite different. Among the 19 substrate tested, Chr-OYE1 could catalyze the reduction of 18 of them including an ynone with excellent stereos electivity for several prochiral ones, and its specific activity was roughly 1100-fold high than Chr-OYE2, which only catalyzed 3 of the substrates. After restoring the conserved tyrosine, Chr-OYE2 remained the same substrate spectrum, but showed significantly enhanced activity and stereoselectivity. (C) 2015 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.molcatb.2015.11.008
点击查看最新优质反应信息

文献信息

  • Characterization of Two Isoforms of Mouse 3(17).ALPHA.-Hydroxysteroid Dehydrogenases of the Aldo-Keto Reductase Family
    作者:Syuhei Ishikura、Noriyuki Usami、Satoko Nakajima、Akiko Kameyama、Hiroaki Shiraishi、Vincenzo Carbone、Ossama El-Kabbani、Akira Hara
    DOI:10.1248/bpb.27.1939
    日期:——
    Mouse kidney contains two 3(17)α-hydroxysteroid dehydrogenases (HSDs) that show essentially the same properties except for their isoelectric points. However, the structural differences and physiological roles of the two enzymes remain unknown. In this study, we have isolated cDNAs for the two 3(17)α-HSDs from a total RNA sample of mouse kidney by reverse transcription-PCR. The identity of the cDNAs was confirmed by characterization of the recombinant enzymes that showed the same molecular weights, pI values, pH optima, substrate specificity and inhibitor sensitivity as those of the enzymes from mouse kidney. We also found that the recombinant enzymes reduce precursors of neuroactive progesterone derivatives, 5α-dihydrotestoserone, deoxycorticosterone, dehydroepiandrosterone, dehydroepiandrosterone sulfate and estrone at low Km values of 0.3—2 μM. The two enzymes belonged to the aldo-keto reductase (AKR) family, and their 323-amino acid sequences differed only by five amino acids. The sequences of the two isoforms are identical to those of proteins that are predicted to be encoded in a gene for AKR1C21 in the database of the mouse genome. However, the mRNAs for the two isoforms were expressed in mouse kidney and other tissues, in which their expression levels were different. The results indicate an important role of 3(17)α-HSD in controlling the concentrations of various steroid hormones in the mouse tissues, and suggest the existence of two genes for the two isoforms of the enzyme.
    小鼠肾脏含有两种3(17)α-羟基类固醇脱氢酶(HSD),它们的基本性质相同,除了等电点不同。然而,这两种酶的结构差异和生理作用仍然未知。在本研究中,我们通过逆向转录-PCR从小鼠肾脏总RNA样本中分离得到了两种3(17)α-HSD的cDNA。通过重组酶的特性鉴定确认了cDNA的身份,这些重组酶显示出与小鼠肾脏来源酶相同的分子量、等电点、pH最适值、底物特异性和抑制剂敏感性。我们还发现,这些重组酶能以低Km值0.3—2 μM还原神经活性孕酮衍生物前体、5α-二氢睾酮、去氧皮质酮、脱氢表雄酮、脱氢表雄酮硫酸酯和雌酮。这两种酶属于醛酮还原酶(AKR)家族,它们的323个氨基酸序列仅相差五个氨基酸。这两种异构体的序列与预测在老鼠基因组数据库中的AKR1C21基因编码的蛋白质序列一致。然而,这两种异构体的mRNA在小鼠肾脏和其他组织中表达,其表达水平不同。结果表明,3(17)α-HSD在小鼠组织中控制各种类固醇激素的浓度中起着重要作用,并提示这两种酶异构体存在两种基因。
  • Water‐Soluble Phenanthroline Complexes of Rhodium, Iridium and Ruthenium for the Regeneration of NADH in the Enzymatic Reduction of Ketones
    作者:Jérôme Canivet、Georg Süss‐Fink、Petr Štěpnička
    DOI:10.1002/ejic.200700505
    日期:2007.10
    10-phenanthroline), isolated as the water-soluble chloride salts, for transfer hydrogenation of NAD+ to give NADH in aqueous solution. The best results were obtained with rhodium complex 1, which gave catalytic turnover frequencies up to 2000 h–1 in aqueous solution at pH 7 and 60 °C with sodium formate as the hydrogen source. When this NADH-regenerating catalytic system is combined with NADH-dependent enzymes
    在醇脱氢酶催化的酮的对映选择性还原中消耗的烟酰胺辅酶 NADH 需要再生以保持酶活性。因此,我们研究了阳离子配合物 [(η5-C5Me5)Rh(N∩N)Cl]+ (1: N∩N = 1,10-phenanthroline; 2: N∩N = 5-nitro-1, 10-菲咯啉; 3: N∩N = 5-amino-1,10-菲咯啉), [(η5-C5Me5)Ir(N∩N)Cl]+ (4: N∩N = 5-nitro-1,10 -phenanthroline) 和 [(η6-C6Me6)Ru(N∩N)Cl]+ (5: N∩N = 5-nitro-1,10-phenanthroline),分离为水溶性氯化物盐,用于转移氢化NAD+在水溶液中得到NADH。使用铑配合物 1 获得了最好的结果,在 pH 7 和 60 °C 的水溶液中,以甲酸钠作为氢源,其催化转化频率高达 2000 h-1。当这种 NADH
  • Engineering the nucleotide coenzyme specificity and sulfhydryl redox sensitivity of two stress-responsive aldehyde dehydrogenase isoenzymes of <i>Arabidopsis thaliana</i>
    作者:Naim Stiti、Isaac O. Adewale、Jan Petersen、Dorothea Bartels、Hans-Hubert Kirch
    DOI:10.1042/bj20101337
    日期:2011.3.15

    Lipid peroxidation is one of the consequences of environmental stress in plants and leads to the accumulation of highly toxic, reactive aldehydes. One of the processes to detoxify these aldehydes is their oxidation into carboxylic acids catalyzed by NAD(P)+-dependent ALDHs (aldehyde dehydrogenases). We investigated kinetic parameters of two Arabidopsis thaliana family 3 ALDHs, the cytosolic ALDH3H1 and the chloroplastic isoform ALDH3I1. Both enzymes had similar substrate specificity and oxidized saturated aliphatic aldehydes. Catalytic efficiencies improved with the increase of carbon chain length. Both enzymes were also able to oxidize α,β-unsaturated aldehydes, but not aromatic aldehydes. Activity of ALDH3H1 was NAD+-dependent, whereas ALDH3I1 was able to use NAD+ and NADP+. An unusual isoleucine residue within the coenzyme-binding cleft was responsible for the NAD+-dependence of ALDH3H1. Engineering the coenzyme-binding environment of ALDH3I1 elucidated the influence of the surrounding amino acids. Enzyme activities of both ALDHs were redox-sensitive. Inhibition was correlated with oxidation of both catalytic and non-catalytic cysteine residues in addition to homodimer formation. Dimerization and inactivation could be reversed by reducing agents. Mutant analysis showed that cysteine residues mediating homodimerization are located in the N-terminal region. Modelling of the protein structures revealed that the redox-sensitive cysteine residues are located at the surfaces of the subunits.

    脂质过氧化是植物遭受环境胁迫的后果之一,会导致高毒性、高活性醛的积累。这些醛的解毒过程之一是在依赖 NAD(P)+ 的 ALDHs(醛脱氢酶)催化下氧化成羧酸。我们研究了拟南芥家族 3 的两种 ALDH(细胞质 ALDH3H1 和叶绿体异构体 ALDH3I1)的动力学参数。这两种酶具有相似的底物特异性,都能氧化饱和脂肪醛。催化效率随着碳链长度的增加而提高。这两种酶还能氧化α、β-不饱和醛,但不能氧化芳香醛。ALDH3H1 的活性依赖于 NAD+,而 ALDH3I1 则能够利用 NAD+ 和 NADP+。ALDH3H1 的活性依赖于 NAD+,而 ALDH3I1 则能利用 NAD+ 和 NADP+。辅酶结合裂隙中一个不寻常的异亮氨酸残基是 ALDH3H1 依赖于 NAD+ 的原因。对 ALDH3I1 的辅酶结合环境进行工程改造阐明了周围氨基酸的影响。两种 ALDH 的酶活性都对氧化还原反应敏感。除了同源二聚体的形成外,抑制作用还与催化和非催化半胱氨酸残基的氧化有关。二聚体的形成和失活可被还原剂逆转。突变分析表明,介导同源二聚化的半胱氨酸残基位于 N 端区域。蛋白质结构建模显示,对氧化还原反应敏感的半胱氨酸残基位于亚基的表面。
  • Recombinant Squalene Synthase. A Mechanism for the Rearrangement of Presqualene Diphosphate to Squalene
    作者:Brian S. J. Blagg、Michael B. Jarstfer、Daniel H. Rogers、C. Dale Poulter
    DOI:10.1021/ja020411a
    日期:2002.7.1
    of squalene; and rillingol (ROH), a cyclopropylcarbinyl alcohol formed by addition of water to the tertiary cyclopropylcarbinyl cation previously proposed as an intermediate in the rearrangement of PSPP to SQ (Poulter, C. D. Acc. Chem. Res. 1990, 23, 70-77). The structure and absolute stereochemistry of the tertiary cyclopropylcarbinyl alcohol were established by synthesis using two independent routes
    角鲨烯合酶 (SQase) 催化两个分子的法呢基二磷酸 (FPP) 缩合形成二磷酸前角鲨烯 (PSPP),随后 PSPP 重排和 NADPH 依赖性还原为角鲨烯 (SQ)。这些反应是胆固醇生物合成的第一步。当重组 SQase 在二氢 NADPH(NADPH3,一种在烟酰胺环中缺少 5,6-双键的非反应性类似物)存在下与 FPP 一起温育时,形成了三种产物:脱氢角鲨烯 (DSQ),一种八氢番茄红素的 C30 类似物;10(S)-羟基角鲨烯 (HSQ),角鲨烯的羟基类似物;和 rillingol (ROH),一种环丙基甲醇,通过将水添加到叔环丙基甲醇阳离子中形成,先前提出作为 PSPP 重排为 SQ 的中间体 (Poulter, CD Acc. Chem. Res. 1990, 23, 70-77)。叔环丙基甲醇的结构和绝对立体化学是通过使用两条独立的路线合成建立的。从酶催化反应中分离 ROH
  • Characterization of recombinant Aspergillus fumigatus mannitol-1-phosphate 5-dehydrogenase and its application for the stereoselective synthesis of protio and deuterio forms of d-mannitol 1-phosphate
    作者:Stefan Krahulec、Guilliano C. Armao、Hansjörg Weber、Mario Klimacek、Bernd Nidetzky
    DOI:10.1016/j.carres.2008.04.011
    日期:2008.7
    the reaction. In situ proton NMR studies of enzymatic oxidation of d-5-[2H]-mannitol 1-phosphate demonstrated that AfM1PDH was stereospecific for transferring the deuterium to NAD+, producing (4S)-[2H]-NADH. Comparison of maximum initial rates for NAD+-dependent oxidation of protio and deuterio forms of D-mannitol 1-phosphate at pH 7.1 and 25 degrees C revealed a primary kinetic isotope effect of 2
    烟曲霉(AfM1PDH)的推定长链甘露醇-1-磷酸5-脱氢酶(AfM1PDH)在大肠杆菌中过表达至细胞内总蛋白的约50%。纯化的重组蛋白为溶液中约40kDa的单体,并显示出预期的酶功能,催化NAD(H)依赖性的d-甘露糖醇1-磷酸和d-果糖6-磷酸的相互转化,具有170 U的比还原酶活性。 / mg在pH 7.1和25摄氏度下。NADP(H)显示出边际活性。由NAD(H)介导并由纯化的假丝酵母Bodinii甲酸脱氢酶和AfM1PDH耦合的酶系统催化的氢从甲酸盐到d-果糖6-磷酸的转移被用于制备d-甘露糖醇1-磷酸盐使用氘代甲酸盐进行类似的操作,其5- [2H]衍生物。d-甘露糖醇1-磷酸钡盐沉淀后,基于反应中使用的200 mM d-果糖6-磷酸酯,得到纯品(> 95%,通过HPLC和NMR分析),分离收率约为90% 。d-5- [2H]-甘露醇1-磷酸酶促氧化的原位质子NMR研究表明,Af
查看更多

同类化合物

鸟苷(5')四磷酰(5')鸟苷 还原辅酶Ⅱ四钠盐 还原型辅酶Ⅰ 还原型辅酶II(NADPH)四钠盐 苯(甲)醛,4-乙酰基-,1-肟 腺苷(5')四磷酸酯尿苷 硫代辅酶腺嘌呤二核苷磷酸钠 硫代烟酰胺-DPN 甲基N~5~-(二氨基甲亚基)-N~2~-[(3S,4S)-3-羟基-4-({N-[(4S)-3-羟基-6-甲基-4-{[(2S)-3-甲基-1-{[N-(3-甲基丁酰)-L-缬氨酰]氨基}-1-羰基丁烷-2-基]氨基}庚酰]-L-丙氨酰}氨基)-6-甲基庚酰]-L-鸟氨酸酸酯 烟酸腺嘌呤二核苷酸磷酸酯 烟酰胺腺嘌呤双核苷酸磷酸盐 烟酰胺腺嘌呤二核苷酸 烟酰胺1,N(6)-乙烯桥腺嘌呤二核苷酸 尿苷酰基-(3'-5')-腺苷酰-(3'-5')尿苷 尼克酰胺2-叠氮氨基嘌呤二核苷酸 地纽福索四钠 地夸磷索 八磷酸腺苷 二腺苷三磷酸酯铵盐 二喹唑醇杂质1 β-烟酰胺腺嘌呤二核苷酸 β,β'-单氯亚甲基二腺苷5',5''-P(1),P(4)-四磷酸酯 beta-烟酰胺腺嘌呤二核苷二钠 [[[[[[(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲氧基-羟基磷酰]氧基-羟基磷酰]氧基-羟基磷酰]氧基-羟基磷酰]氧基-羟基磷酰][(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基磷酸氢酯 [[[[(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲氧基-羟基磷酰]氧基-羟基磷酰]氧基-羟基磷酰][(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基磷酸氢酯 [[[(2R,3S,4R,5R)-5-(2-氨基-6-氧代-3H-嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲氧基-羟基磷酰]氧基-羟基磷酰][(2R,3S,4R,5R)-5-(2-氨基-6-氧代-3H-嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基磷酸氢酯 [[(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲氧基-羟基磷酰][(2R,3S,4R,5R)-5-(3,4-二甲基吡啶-1-鎓-1-基)-3,4-二羟基四氢呋喃-2-基]甲基磷酸酯 [[(2R,3S,4R,5R)-5-(2-氨基-6-氧代-3H-嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲氧基-羟基磷酰][(2R,3S,4R,5R)-5-(2-氨基-6-氧代-3H-嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基磷酸氢酯 [(2R,3S,4R,5R)-5-(6-氨基-8-叠氮基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲基[[(2R,3S,4R,5R)-5-(3-氨基甲酰-4H-吡啶-1-基)-3,4-二羟基四氢呋喃-2-基]甲氧基-羟基磷酰]磷酸氢酯 P(1)-(腺苷-5')-P(5)-(胸苷-5')-五磷酸酯 BETA-烟酰胺腺嘌呤双核苷酸 Alpha-二磷酸啶核甙酸 3-苯甲酰基吡啶-腺嘌呤二核苷酸 3-氨基吡啶腺嘌呤二核苷酸 3-吡啶乙醛腺嘌呤二核苷酸 3-乙酰吡啶腺嘌呤二核苷酸 3'-脱氧烟酰胺腺嘌呤二核苷酸 2-氟-6-甲氧基苯甲腈 2'-脱氧腺苷酰-(3'-5')-胸苷 1-[5-[[[[5-(6-氨基嘌呤-9-基)-3,4-二羟基-四氢呋喃-2-基]甲氧基-羟基-磷酰]氧基-羟基-磷酰]氧基甲基]-3,4-二羟基-四氢呋喃-2-基]吡啶-5-羧酸酯 1,6-二氢烟酰胺腺嘌呤二核苷酸 1,2-二氢烟酰胺腺嘌呤二核苷酸 (2S,3S,4S,5R)-5-[[[[(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲氧基-羟基磷酰]氧基-羟基磷酰]氧基甲基]-2-(3-氨基甲酰吡啶-1-鎓-1-基)-4-羟基四氢呋喃-3-醇 (2R,3R,4S,5R)-5-[[[[(2R,3S,4R,5R)-5-(6-氨基嘌呤-9-基)-3,4-二羟基四氢呋喃-2-基]甲氧基-羟基磷酰]氧基-羟基磷酰]氧基甲基]-2-(3-氨基甲酰-5-甲基吡啶-1-鎓-1-基)-4-羟基四氢呋喃-3-醇 (14β)-8-甲基罗汉松-12-烯-13,14-二甲醛 P1,P4-bis(uridin-5'-yl) tetraphosphate 2',2'',3',3''-O-tetrabutyryl 1,N6-etheno NAD+ β-nicotinamide adenine dinucleotide reduced 3'-azido-3'-deoxy-5'-thymidinyl 5'-uridinyl phosphate 5'-adenosyl 3'-azido-3'-deoxy-5'-thymidinyl phosphate