摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

thioaceramide

中文名称
——
中文别名
——
英文名称
thioaceramide
英文别名
Thionitroso ethane;thionitrosoethane
thioaceramide化学式
CAS
——
化学式
C2H5NS
mdl
——
分子量
75.1344
InChiKey
CTYYBVXVTZJKEQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    4
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    44.4
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    thioaceramide六氯化钨 为溶剂, 反应 25.0h, 生成 tungsten(IV) sulfide
    参考文献:
    名称:
    用CdS量子点修饰的WS2 /石墨化碳氮化物异质结纳米片,用于光催化制氢
    摘要:
    二维/二维(2D / 2D)堆叠异质结构在制造有效的光催化剂方面是非常理想的,因为面对面接触可以在两个半导体之间提供最大的界面区域。这极大地促进了电荷载流子的迁移。本文中,首次设计了用CdS量子点(QD)装饰的WS 2 /石墨化碳氮化物(CN)2D / 2D纳米片异质结构。优化的CdS / WS 2 / CN而不另一助催化剂呈现显著增强光催化ħ 2的1174.5微摩尔ħ进化速率-1 克-1可见光照射下(λ> 420 nm),几乎是纯CN纳米片的67倍。改善的光催化活性主要归因于在这三个成分之间建立的高效电荷转移途径,该途径有效地加速了光生电子和空穴的分离和转移,从而抑制了它们的重组。此外,扩大的光吸收范围也有助于出色的光催化效率。此外,CdS / WS 2 / CN光催化剂在20小时内的4个循环中显示出出色的稳定性和可重复使用性,而光催化H 2的放出没有明显的衰减。可以相信,这项工作可能会为专门设计的2D
    DOI:
    10.1002/cssc.201800053
点击查看最新优质反应信息

文献信息

  • The highly improved hydrogen evolution performance of a 0D/0D MoP-modified P-doped Mn<sub>0.5</sub>Cd<sub>0.5</sub>S photocatalyst
    作者:Jiaowei Yan、Ying Wang、Lei Shi
    DOI:10.1039/d2dt01195f
    日期:——

    MoP-modified P-doped Mn0.5Cd0.5S composites were prepared and they showed excellent hydrogen production performance in pure water and sacrificial agent environments.

    MoP改性的P掺杂Mn0.5Cd0.5S复合材料已制备,它们在纯和牺牲剂环境中表现出优异的产氢性能。
  • Enhanced photocatalytic performance of MoS 2 modified by AgVO 3 from improved generation of reactive oxygen species
    作者:Yingying Qin、Hong Li、Jian Lu、Yongsheng Yan、Ziyang Lu、Xinlin Liu
    DOI:10.1016/s1872-2067(18)63111-0
    日期:2018.9
    an efficient AgVO3/MoS2 composite photocatalyst was successfully synthesized via a hydrothermal method. The photocatalytic activity of the as-prepared photocatalyst was evaluated by using it for assessing the degradation of different organic pollutants under visible-light irradiation. The composite 3%-AgVO3/MoS2 catalyst demonstrated a significantly enhanced photocatalytic activity compared to the
    摘要 本工作通过热法成功合成了一种高效的AgVO3/MOSa href=https://www.molaid.com/MS_62563 target="_blank">S2复合光催化剂。所制备的光催化剂的光催化活性通过将其用于评估在可见光照射下对不同有机污染物的降解进行评估。与纯化合物(AgVO3 和 MOSa href=https://www.molaid.com/MS_62563 target="_blank">S2)相比,复合 3%-AgVO3/MOSa href=https://www.molaid.com/MS_62563 target="_blank">S2 催化剂表现出显着增强的光催化活性。优异的光催化性能背后的原因是 AgVO3 对 MOSa href=https://www.molaid.com/MS_62563 target="_blank">S2 进行改性以促进 O2 吸附/活化。此外,复合催化剂促进了双电子氧还原反应,从而在 MOSa href=https://www.molaid.com/MS_62563 target="_blank">S2 表面产生 H2O2 以产生额外的活性氧 (ROS)。ESR结合POPHA荧光检测方法和自由基捕获实验被用来阐明ROS的形成机制,包括•OH、•O2-和 。此外,额外的 ROS 的产生可能会加速电子消耗,从而为有机污染物的氧化留下更多的孔洞。还讨论了复合材料可能的光催化机理。
  • A one-pot and in situ synthesis of CuS-graphene nanosheet composites with enhanced peroxidase-like catalytic activity
    作者:Guangdi Nie、Liang Zhang、Xiaofeng Lu、Xiujie Bian、Weining Sun、Ce Wang
    DOI:10.1039/c3dt51489g
    日期:——
    CuS-graphene nanosheet (GNS) composites with well-defined morphology have been successfully fabricated via a simple one-pot hydrothermal route by using thioacetamide (TAA) as both the sulfur source and reducing agent. The as-prepared CuS-GNS composites with an appropriate content of graphene exhibited an even higher peroxidase-like catalytic activity than pristine CuS nanoparticles in acetate buffer solution (pH = 4.0), which provided a facile method for the colorimetric detection of hydrogen peroxide (H2O2). It was calculated that H2O2 could be detected as low as 1.2 μM (S/N = 3) with a wide linear range from 2.0 to 20.0 μM (R2 = 0.992), indicating that the as-prepared catalyst as an artificial peroxidase is promising for application in biosensors and environmental monitoring.
    利用代乙酰胺(TAA)作为源和还原剂,通过简单的一锅热法路线成功制备了具有明确形态的 CuS-石墨烯纳米片(GNS)复合材料。制备的 CuS-GNS 复合材料含有适当含量的石墨烯,在醋酸盐缓冲溶液(pH = 4.0)中表现出比原始 CuS 纳米颗粒更高的过氧化物酶催化活性,为过氧化氢H2O2)的比色检测提供了一种简便的方法。据计算, 的检测值可低至 1.2 μM(S/N = 3),线性范围从 2.0 μM 到 20.0 μM(R2 = 0.992),这表明制备的催化剂作为一种人工过氧化物酶生物传感器和环境监测方面具有广阔的应用前景。
  • Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light
    作者:Meng Peng、Li-Li Ma、Yong-Gang Zhang、Ming Tan、Jian-Bo Wang、Ying Yu
    DOI:10.1016/j.materresbull.2009.05.015
    日期:2009.9
    Cu2S nanostructures were fabricated by polyol method and then characterized by X-ray diffractometer, scanning electron microscopy, transmission electron microscopy (TEM) and high resolution TEM. The morphologically different Cu2S nanostructures such as vertically nanorod arrays, nanoflowers assembled by nanorod arrays. nanoparticles and nanowires, can be successfully synthesized under different experimental conditions. The growth mechanism for the different nanostructures is proposed. The photocatalytic activity of the prepared samples was evaluated based on the degradation of organic pollutant, active brilliant red X-3B (X-3B), under visible light. Among the Cu2S nanostructures, self-assembled nanoflowers have the highest photocatalytic activity. In addition, the prepared Cu2S nanostructures are found to be able to decolorize X-3B with iron ions for the formation of Fenton reagent. This study provides a more choice to prepare self-assembled nanostructures for the application of environmental pollution control. (C) 2009 Elsevier Ltd. All rights reserved.
  • Room temperature novel chemical synthesis of Cu2ZnSnS4 (CZTS) absorbing layer for photovoltaic application
    作者:N.M. Shinde、D.P. Dubal、D.S. Dhawale、C.D. Lokhande、J.H. Kim、J.H. Moon
    DOI:10.1016/j.materresbull.2011.11.020
    日期:2012.2
    Cu2ZnSnS4 (CZTS) thin films have been prepared by a novel chemical successive ionic layer adsorption and reaction (SILAR) method. These films were annealed in vacuum at 673 K and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy, electrical, and wettability studies. The X-ray diffraction studies showed the formation of kesterite structure of CZTS films. Scanning electron micrograph revealed the formation of densely packed, compact and large grained CZTS films. The CZTS films showed high optical absorption (10(4) cm(-1)) exhibiting band gap energy 01 1.55 eV. Wettability test revealed the hydrophilic nature of CZTS films. The CZTS thin films showed semiconducting behavior with p-type electrical conductivity. Further photovoltaic activity of these films was studied by forming the photoelectrochemical cell. (C) 2011 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

S,S-diisopropyl-sulfimide N-tert-butyloxycarbonyl isopropyl methyl sulfimine N-trifluoroacetyl-methyl isopropylsulfilimine S,S-dipropyl-sulfimide thioaceramide S,S-bis-(2-hydroxy-ethyl)-sulfimide (Dimethyl-lambda4-sulfanylidene)urea N-Acetyliminodiethylsulfuran N-Monochloracetyl-S,S-dimethylsulfimid N-acetyl-S-methyl-S-(perfluorooctyl)sulfilimine Dimethylsulfimin prop-2-enyl N-[2-methoxyethyl(methyl)-lambda4-sulfanylidene]carbamate N-dichloroacetyl-S,S-diethylsulphilimine (4-Aminobutylsulfinimidoyl)formic acid 2-Methyl-1-sulfanylideneguanidine 2-thionitroso-1,4-dihydropyrazine 4-thionitroso-3,4-dihydro-2H-pyran 1-(1-Thionitrosopropyl)cyclohexa-1,3-diene 1-sulfanylidene-2H-pyrazin-1-ium (2-Aminoethylsulfinimidoyl)methanethial 3,6-Dimethylheptyl-imino-methyl-lambda4-sulfane Dimethyl-(2,3,5-trimethylcyclohepta-1,3,6-trien-1-yl)imino-lambda4-sulfane N'-carbamimidoyl-N-sulfanylidenemethanimidamide 2-Dodecyl-1-sulfanylideneguanidine ethane;2-thionitrosoethenamine Sulfanylidene(12-thionitrosododecylimino)-lambda4-sulfane Imino-(2-methylpropyl)-propan-2-yl-lambda4-sulfane Imino(dipentyl)-lambda4-sulfane Cyclopropyl-imino-propan-2-yl-lambda4-sulfane Imino-propan-2-yl-propyl-lambda4-sulfane Cyclobutyl-imino-propan-2-yl-lambda4-sulfane tert-butyl (NE)-N-[methyl(propan-2-yl)-lambda4-sulfanylidene]carbamate N-(dimethyl-lambda4-sulfanylidene)-2,2,2-trifluoroacetamide S-cyclohexyl-S-methyl-N-(trifluoroacetyl)sulfilimine N-acetyl dimethylsulfimide diethyl(imino)-λ4-sulfane sulfate 1-Methylsulfanyl-3-thionitrosopropane