A novel amphiphilic vitamin C (VC) derivative, disodium isostearyl 2-O-<i>L</i>-ascorbyl phosphate (VCP-IS-2Na), which possesses a C<sub>18</sub> alkyl chain attached to a stable ascorbate derivative, sodium <i>L</i>-ascorbic acid 2-phosphate (VCP-Na), was evaluated as a topical prodrug of VC with transdermal activity in human living skin equivalent (LSE) models. The permeation assay used was EPI-606X in the Franz-type diffusion cell system. VCP-IS-2Na exhibited much better permeability than VC and VCP-Na. The accumulation assays applied were EPI-200X and LSE-high by the dynamic system. The increased skin accumulation of VCP-IS-2Na was superior to that of VCP-Na and VC. VCP-IS-2Na that is susceptible to enzymatic hydrolysis by esterase and/or phosphatase released VC in the skin. Measurement of the metabolites that permeated and accumulated from the skin model suggested that VCP-IS-2Na was mainly metabolized via VCP-Na to VC in EPI-606X and EPI-200X, while it was mainly metabolized directly to VC in TESTSKIN LSE-high. Thus, these characteristics indicate that the novel VC derivative, VCP-IS-2Na, may be advantageous as a readily available source of VC for skin care applications.