摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

styrene ozonide | 23253-30-7

中文名称
——
中文别名
——
英文名称
styrene ozonide
英文别名
Styrol-ozonid;1,2,4-Trioxolane, 3-phenyl-;3-phenyl-1,2,4-trioxolane
styrene ozonide化学式
CAS
23253-30-7
化学式
C8H8O3
mdl
——
分子量
152.15
InChiKey
XNTUDDFWOBWITE-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.5
  • 重原子数:
    11
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.25
  • 拓扑面积:
    27.7
  • 氢给体数:
    0
  • 氢受体数:
    3

安全信息

  • 海关编码:
    2914399090

SDS

SDS:11388f98eb2e05a22c708a8d356552f6
查看

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    SnCl 4介导的臭氧化物与烯丙基三甲基硅烷的反应:1,2-二氧戊环的形成
    摘要:
    SnCl 4介导的臭氧化物(1,2,4-三氧戊环)与烯丙基三甲基硅烷的反应通过金属化的羰基氧化物提供了三甲基甲硅烷基甲基-1,2-二氧戊环。羰基氧化物可通过醚或过氧化物中氧的初始电离而产生。
    DOI:
    10.1016/s0040-4039(99)01399-4
  • 作为产物:
    描述:
    苯乙烯臭氧 作用下, 以77%的产率得到styrene ozonide
    参考文献:
    名称:
    SnCl 4介导的臭氧化物与烯丙基三甲基硅烷的反应:1,2-二氧戊环的形成
    摘要:
    SnCl 4介导的臭氧化物(1,2,4-三氧戊环)与烯丙基三甲基硅烷的反应通过金属化的羰基氧化物提供了三甲基甲硅烷基甲基-1,2-二氧戊环。羰基氧化物可通过醚或过氧化物中氧的初始电离而产生。
    DOI:
    10.1016/s0040-4039(99)01399-4
点击查看最新优质反应信息

文献信息

  • Highly efficient biphasic ozonolysis of alkenes using a high-throughput film-shear flow reactor
    作者:Alexander J. Kendall、Justin T. Barry、Daniel T. Seidenkranz、Ajay Ryerson、Colin Hiatt、Chase A. Salazar、Dillon J. Bryant、David R. Tyler
    DOI:10.1016/j.tetlet.2016.02.042
    日期:2016.3
    A new method for ozonolysis of alkenes using a continuous flow film-shear reactor was developed. The reactor uses a shearing microfluidic mixing chamber to provide biphasic mixing of an organic phase and aqueous phase with ozone gas. The H2O acts as an in situ reducing agent for the carbonyl oxide intermediate, providing ketones and aldehydes directly from the reaction mixture. Flow rates of up to
    开发了一种使用连续流膜剪切反应器进行烯烃臭氧分解的新方法。该反应器使用剪切微流体混合室以提供有机相和水相与臭氧气体的两相混合。H 2O充当羰基氧化物中间体的原位还原剂,直接从反应混合物中提供酮和醛。达到最高1.0 mmol / min(烯烃)的流速,臭氧反应效率> 70%。芳基共轭烯烃以多克级反应生成羰基物种,收率很高。然而,烷基烯烃与臭氧反应主要形成仲臭氧化物。烷基和芳基烯烃之间产物分布的差异可能源于羰基氧化物中间体的电子稳定性,由于共轭作用,芳烃衍生物的电子稳定性更长。
  • Crossed ozonide formation in the ozonolysis of styrene
    作者:M. Kimberly Painter、Hyung-Soo Choi、Kurt W. Hillig、Robert L. Kuczkowski
    DOI:10.1039/p29860001025
    日期:——
    Styrene–benzaldehyde mixtures (unsubstituted and the p-nitro, p-chloro, and p-methyl systems) were ozonized in CDCl3 at 0 °C. The yields of styrene ozonide and of the two crossed ozonides (stilbene and ethylene ozonides) were determined. The cleavage direction ratios of the primary ozonides were also determined. In a computer simulation of the yields five rate expressions were employed, giving relative rate coefficient
    苯乙烯-苯甲醛混合物(未取代的和对硝基,对氯和对甲基系统)在CDCl 3中臭氧化在0°C下。测定了苯乙烯臭氧化物和两种交叉的臭氧化物(二苯乙烯和乙烯臭氧化物)的产率。还确定了初级臭氧化物的裂解方向比率。在产率的计算机模拟中,采用了五个速率表达式,给出了有关羰基氧化物和醛之间的环加成反应的相对速率系数信息。臭氧分解过程中各种竞争反应的分析表明,吸电子取代基可通过增强羰基氧化物的偶极特性和醛的偶极亲和性来增加交叉的臭氧化物的形成。取代基还影响伯氮氧化物的裂解方向和溶剂笼效应。交叉的臭氧化物速率常数[ k(sti臭氧化物)/(k(乙烯臭氧化物)]的斜率(ρ)为1.4(0.1)。
  • The mechanistic study and synthetic applications of the base treatment in the ozonolytic reactions
    作者:Yung-Son Hon、Sheng-Wun Lin、Ling Lu、Yao-Jung Chen
    DOI:10.1016/0040-4020(95)98699-i
    日期:1995.4
    E1cb mechanism is the overwhelming process in the reaction of bases and ozonides. As a quenching agent in the ozonolysis of a variety of alkenes, the reactions involving triethylamine often gave better yields and proceeded faster than those involving methyl sulfide. On the other hand, in the presence of 4 Å molecular sieves, the secondary amines reacted with mono- and 1,1-di-substituted ozonides to afford
    E1cb机制是碱和臭氧化物反应中的压倒性过程。作为各种烯烃的臭氧分解反应的淬灭剂,涉及三乙胺的反应通常比涉及甲基硫醚的反应收率更高,并且进行速度更快。另一方面,在4Å分子筛的存在下,仲胺与单和1,1-二取代的臭氧化物反应,以高收率提供还原性胺化产物。反应混合物中甲酸铵的形成也支持了臭氧化物与胺反应中的E1cb机理。
  • Selectivity in Lewis acid-mediated fragmentations of peroxides and ozonides: application to the synthesis of alkenes, homoallyl ethers, and 1,2-dioxolanes †
    作者:Patrick H. Dussault、Hyung-Jae Lee、Xuejun Liu
    DOI:10.1039/b001391i
    日期:——
    Fragmentation of dialkyl peroxides and ozonides is strongly influenced by the choice of Lewis acid. TiCl4 promotes C–O ionization (SN1 reaction) of tertiary peroxides while SnCl4 and BF3·OEt2 promote O–O heterolysis (Hock reaction). The cationic intermediates are trapped with allyltrimethylsilane to afford allylated alkanes and homoallyl ethers. In the absence of a nucleophile, ozonides (1,2,4-trioxolanes) invariably undergo O–O heterolysis. However, the combination of allyltrimethylsilane and SnCl4 results in formation of 1,2-dioxolanes via trapping of intermediates derived from SN1 ionization.
    二烷基过氧化物和臭氧化物的断裂强烈受到路易斯酸选择的影响。TiCl4促进叔过氧化物的C-O离子化(SN1反应),而SnCl4和BF3·OEt2促进O-O异裂(Hock反应)。阳离子中间体被烯丙基三甲基硅烷捕获,得到烯丙基化的烷烃和同烯丙基醚。在缺少亲核试剂的情况下,臭氧化物(1,2,4-三氧杂环戊烷)不可避免地发生O-O异裂。然而,烯丙基三甲基硅烷和SnCl4的组合导致通过捕获SN1离子化产生的中等体形成1,2-二氧杂环戊烷。
  • ‘Reductive ozonolysis’ via a new fragmentation of carbonyl oxides
    作者:Chris Schwartz、Joseph Raible、Kyle Mott、Patrick H. Dussault
    DOI:10.1016/j.tet.2006.08.092
    日期:2006.11
    This account describes the development of methodologies for ‘reductiveozonolysis, the direct ozonolytic conversion of alkenes into carbonyl groups without the intermediacy of 1,2,4-trioxolanes (ozonides). Ozonolysis of alkenes in the presence of DMSO produces a mixture of aldehyde and ozonide. The combination of DMSO and Et3N results in improved yields of carbonyls but still leaves unacceptable levels
    该文献描述了“还原”臭氧分解方法的发展,即烯烃直接臭氧分解转化为羰基而没有1,2,4-三氧杂环戊烷(臭氧化物)的中介作用。在DMSO存在下烯烃的臭氧分解产生醛和臭氧化物的混合物。DMSO和Et 3 N的组合可提高羰基化合物的收率,但仍然留下不可接受的残留臭氧化物。在不存在DMSO的情况下,使用仲胺或叔胺可获得类似的结果。据认为,胺的影响是由转化成相应的N-氧化物引起的。胺N存在下的臭氧分解氧化物有效抑制臭氧化物的形成,产生高产率的醛。假设与胺氧化物的反应涉及空前的羰基氧化物捕集以产生两性离子加合物,该两性离子加合物断裂以产生所需的羰基,胺和1 O 2。
查看更多

同类化合物

青蒿氧烷 甲基3-甲基-1,2,4-三氧杂环戊烷-3-羧酸酯 烯丙基苯臭氧化物 5-乙酰基-3,5-二甲基-1,2,4-三氧杂环戊烷-3-甲腈 3-苯基-1,2,4-三氧杂螺[5.4]癸烷 3-甲基-3-苯基-1,2,4-三氧杂螺[5.4]癸烷 3,5-二苯基-1,2,4-三氧杂环戊烷 3,3-二丁基-1,2,4-三氧杂螺[5.4]癸烷 1-异丙基-4-甲基-2,3,7-三氧杂双环[2.2.1]庚烷 1-(5-甲氧基-3-甲基-1,2,4-三四氢呋喃-3-基)乙酮 1-(5,5-二甲基-1,2,4-三四氢呋喃-3-基)乙酮 1-(3,5,5-三甲基-1,2,4-三四氢呋喃-3-基)乙酮 1,2,4-三噁戊环,3-(1-氯乙烯基)- cis-1,4-Dimethyl-2,3,17-trioxabicyclo<12.2.1>heptadecane trans-1,4-Dimethyl-2,3,17-trioxabicyclo<12.2.1>heptadecane adamantane-2-spiro-3'-8'-hydroxy-8'-methyl-1',2',4'-trioxaspiro[4.5]decane adamantane-2-spiro-3'-8'-hydroxy-1',2',4'-trioxaspiro[4.5]decane (3-methyl-1,2,4-trioxolan-3-yl)hexanal (3-methyl-5-phenyl-5-trifluoromethyl-1,2,4-trioxolan-3-yl)pentanal trioxolane 7 3-tert-butyl-3-methyl-5-phenyl-5-trifluoromethyl-1,2,4-trioxolane 3-Cyano-5-cyclohexyl-3-isobutyl-1,2,4-trioxolane 5'-Cyano-5'-isobutylspiro (trans-5-cyano-5-phenyl-1,2,4-trioxolan-3-yl)-3-cyclopentanecarbaldehyde 5'-Cyano-5'-phenylspiro 3-Cyano-3,5-diphenyl-1,2,4-trioxolane 3-Cyano-3-phenyl-5-tert-butyl-1,2,4-trioxolane 3-tert-Butyl-3-methyl-1,2,4-trioxaspiro[5.4]decane (trans-5-cyano-3,5-dimethyl-1,2,4-trioxolan-3-yl)hexanal (trans-5-cyano-5-methyl-1,2,4-trioxolan-3-yl)hexanal 3,5-dimethyl-5-(3-oxopropyl)-1,2,4-trioxolane-3-carbonitrile (trans-5-cyano-5-methyl-1,2,4-trioxolan-3-yl)pentanal 3-Cyano-3-methyl-5-phenyl-1,2,4-trioxolane 3-Cyano-5-cyclohexyl-3-methyl-1,2,4-trioxolane (E)-3-methyl-5-[7-oxohept-5-enyl]-1,2,4-trioxolane-3-carbonitrile (Z)-3-methyl-5-[5-oxopent-1-enyl]-1,2,4-trioxolane-3-carbonitrile (E)-3-methyl-5-[6-oxohex-4-enyl]-1,2,4-trioxolane-3-carbonitrile 3-methyl-5-[(E)-5-oxopent-3-enyl]-1,2,4-trioxolane-3-carbonitrile (Z)-3-methyl-5-[4-methyl-7-oxohept-3-enyl]-1,2,4-trioxolane-3-carbonitrile 3-(Chloromethyl)-3-methoxy-1,2,4-trioxolane cis-3,5-bis-(chloromethyl)-3,5-dimethoxy-1,2,4-trioxolane trans-3,5-bis-(chloromethyl)-3,5-dimethoxy-1,2,4-trioxolane cis-adamantane-2-spiro-3'-8'-[[(4'-formyl-1'-piperazinyl)carbonyl]methyl]-1',2',4'-trioxaspiro[4.5]decane adamantane-2-spiro-3’-8’-hydroxymethyl-1’,2’,4’-trioxaspiro[4,5]decane 3-(Chloromethyl)-3-fluoro-1,2,4-trioxolane trans-3,5-Bis(chloromethyl)-3-fluoro-1,2,4-trioxolane methyl spiro3,7>decane-2,3'-<1,2,4>trioxolane>-5'-carboxylate 3-Cyano-3-phenyl-1,2,4-trioxolane 3-ethyl-1,24-trioxolane dispiro[adamantane-2,2'-[1,3,5]trioxolane-4',1''-cyclohexane]-3''-ol