IDENTIFICATION AND USE: Chromic chromate is a dark purple or black granular solid. It is used as corrosion inhibitor. HUMAN EXPOSURE AND TOXICITY: Fatal case of nephritis was described following treatment of carcinoma of the face with crystals of chromic acid. Kidneys showed extensive lesions, especially in convoluted tubules. ANIMAL STUDIES: There is no data available.
WEIGHT OF EVIDENCE CHARACTERIZATION: Applying the criteria for evaluating the overall weight of evidence for carcinogenicity to humans outlined in EPA's guidelines for risk assessment (1986), trivalent chromium is most appropriately designated a Group D -- Not classified as to its human carcinogenicity. Using the Proposed Guidelines for Carcinogen Risk Assessment (1996), there are inadequate data to determine the potential carcinogenicity of trivalent chromium ... However, the classification of hexavalent chromium as a known human carcinogen raises a concern for the carcinogenic potential of trivalent chromium. HUMAN CARCINOGENICITY DATA: Occupational exposure to trivalent chromium and other chromium compounds by inhalation has been studied in the chromate manufacturing and ferrochromium industries; however, exposures all include mixed exposures to both Cr(III) and Cr(VI). Cr(VI) species is the likely etiological agent in reports of excess cancer risk in chromium workers. Data addressing exposures to Cr(III) alone are not available and data are inadequate for an evaluation of human carcinogenic potential. ... ANIMAL CARCINOGENICITY DATA: The data from oral and inhalation exposures of animals to trivalent chromium do not support documentation of the carcinogenicity of trivalent chromium. IARC concluded that animal data are inadequate for the evaluation of the carcinogenicity of Cr(III) compounds. Furthermore, although there is sufficient evidence of respiratory carcinogenicity associated with exposure to chromium, the relative contribution of Cr(III), Cr(VI), metallic chromium, or soluble versus insoluble chromium to carcinogenicity cannot be elucidated... /Chromium (III), insoluble salts/
来源:Hazardous Substances Data Bank (HSDB)
毒理性
致癌性证据
A4;不可归类为人类致癌物。/铬和Cr(III)无机化合物/
A4; Not classifiable as a human carcinogen. /Chromium and Cr(III) inorganic compounds/
Evaluation: There is inadequate evidence in humans for the carcinogenicity of metallic chromium and of chromium(III) compounds. There is inadequate evidence in experimental animals for the carcinogenicity of metallic chromium, barium chromate and chromium(III) compounds. Overall evaluation: Metallic chromium and chromium(III) compounds are not classifiable as to their carcinogenicity to humans (Group 3). /Metallic chromium and chromium(III) compounds/
WEIGHT OF EVIDENCE CHARACTERIZATION: Under the current guidelines (1986), Cr(VI) is classified as Group A - known human carcinogen by the inhalation route of exposure. Carcinogenicity by the oral route of exposure cannot be determined and is classified as Group D. Under the proposed guidelines (1996), Cr(VI) would be characterized as a known human carcinogen by the inhalation route of exposure on the following basis. Hexavalent chromium is known to be carcinogenic in humans by the inhalation route of exposure. Results of occupational epidemiological studies of chromium-exposed workers are consistent across investigators and study populations. Dose-response relationships have been established for chromium exposure and lung cancer. Chromium-exposed workers are exposed to both Cr(III) and Cr(VI) compounds. Because only Cr(VI) has been found to be carcinogenic in animal studies, however, it was concluded that only Cr(VI) should be classified as a human carcinogen. Animal data are consistent with the human carcinogenicity data on hexavalent chromium. Hexavalent chromium compounds are carcinogenic in animal bioassays, producing the following tumor types: intramuscular injection site tumors in rats and mice, intrapleural implant site tumors for various Cr(VI) compounds in rats, intrabronchial implantation site tumors for various Cr(VI) compounds in rats and subcutaneous injection site sarcomas in rats. In vitro data are suggestive of a potential mode of action for hexavalent chromium carcinogenesis. Hexavalent chromium carcinogenesis may result from the formation of mutagenic oxidatitive DNA lesions following intracellular reduction to the trivalent form. Cr(VI) readily passes through cell membranes and is rapidly reduced intracellularly to generate reactive Cr(V) and Cr(IV) intermediates and reactive oxygen species. A number of potentially mutagenic DNA lesions are formed during the reduction of Cr(VI). Hexavalent chromium is mutagenic in bacterial assays, yeasts and V79 cells, and Cr(VI) compounds decrease the fidelity of DNA synthesis in vitro and produce unscheduled DNA synthesis as a consequence of DNA damage. Chromate has been shown to transform both primary cells and cell lines. HUMAN CARCINOGENICITY DATA: Occupational exposure to chromium compounds has been studied in the chromate production, chromeplating and chrome pigment, ferrochromium production, gold mining, leather tanning and chrome alloy production industries. Workers in the chromate industry are exposed to both trivalent and hexavalent compounds of chromium. Epidemiological studies of chromate production plants in Japan, Great Britain, West Germany, and the United States have revealed a correlation between occupational exposure to chromium and lung cancer, but the specific form of chromium responsible for the induction of cancer was not identified ... Studies of chrome pigment workers have consistently demonstrated an association between occupational chromium exposure (primarily Cr(VI)) and lung cancer. Several studies of the chromeplating industry have demonstrated a positive relationship between cancer and exposure to chromium compounds. ANIMAL CARCINOGENICITY DATA: Animal data are consistent with the findings of human epidemiological studies of hexavalent chromium ... /Chromium (VI)/