摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-phospho-beta-D-ribosyl-glycineamide

中文名称
——
中文别名
——
英文名称
5-phospho-beta-D-ribosyl-glycineamide
英文别名
[(2R,3S,4R,5R)-5-[(2-azaniumylacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl phosphate
5-phospho-beta-D-ribosyl-glycineamide化学式
CAS
——
化学式
C7H14N2O8P-
mdl
——
分子量
285.17
InChiKey
OBQMLSFOUZUIOB-SHUUEZRQSA-M
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -7
  • 重原子数:
    18
  • 可旋转键数:
    4
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.86
  • 拓扑面积:
    179
  • 氢给体数:
    4
  • 氢受体数:
    8

反应信息

  • 作为反应物:
    描述:
    10-Formyltetrahydrofolate(2-) 、 5-phospho-beta-D-ribosyl-glycineamide 生成 (6S)-5,6,7,8-tetrahydrofolate(2-) 、 氢(+1)阳离子5'-phosphoribosyl-N-formylglycineamide
    参考文献:
    名称:
    WARREN L.; BUCHANAN J.M., J Biol Chem, 1957, 0021-9258, 613-26
    摘要:
    DOI:
  • 作为产物:
    描述:
    [(2R,3S,4R,5R)-5-amino-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate 、 adenosine 5'-triphosphate聚甘氨酸 生成 adenosine 5'-diphosphate氢(+1)阳离子5-phospho-beta-D-ribosyl-glycineamideH3PO4
    参考文献:
    名称:
    Localization of GAR transformylase in Escherichia coli and mammalian cells
    摘要:

    新生嘌呤生物合成途径的酶可能形成一个多酶复合物,以促进构成途径的十个连续步骤的底物通量。复合物形成的一个可能策略是使用细胞骨架网络或亚细胞膜等结构支架介导蛋白质-蛋白质相互作用。为确定这种策略是否适用于新生嘌呤酶,对第三个嘌呤酶-甘氨酰核苷酸转移酶(GAR Tfase)在活体大肠杆菌和哺乳动物细胞中的定位模式进行了监测。将编码人类和大肠杆菌GAR Tfase的基因融合到绿色荧光蛋白(GFP)中,并通过调节蛋白质表达来引入它们的各自细胞中,并使用共聚焦荧光显微镜监测定位模式。在两种情况下,图像显示蛋白质分散在整个细胞质中。因此,GAR Tfase没有定位到现有的细胞结构中,因此这种设备可能不用于集中途径成员。然而,途径的离散聚簇可能仍然存在于整个细胞质中。

    DOI:
    10.1073/pnas.121182998
点击查看最新优质反应信息

文献信息

  • Molecular Structure of <i>Escherichia coli</i> PurT-Encoded Glycinamide Ribonucleotide Transformylase<sup>,</sup>
    作者:James B. Thoden、Steven Firestine、Andrew Nixon、Stephen J. Benkovic、Hazel M. Holden
    DOI:10.1021/bi000926j
    日期:2000.8.1
    glycinamide ribonucleotide transformylase, or PurT transformylase, catalyzes an alternative formylation of glycinamide ribonucleotide (GAR) in the de novo pathway for purine biosynthesis. On the basis of amino acid sequence analyses, it is known that the PurT transformylase belongs to the ATP-grasp superfamily of proteins. The common theme among members of this superfamily is a catalytic reaction mechanism
    在大肠杆菌中,PurT编码的甘氨酰胺核糖核苷酸转化酶或PurT转化酶催化嘌呤生物合成的从头途径中的另一种形式的甘氨酰胺核糖核苷酸(GAR)甲酰化反应。根据氨基酸序列分析,已知PurT转化酶属于蛋白质的ATP-抓握超家族。该超家族成员之间的共同主题是催化反应机理,该机理需要ATP并通过酰基磷酸酯中间体进行。属于ATP抓握超家族的所有酶均由称为A-,B-和C-结构域的三个结构基序组成,在每种情况下,ATP都位于B-结构域和C-结构域之间。在这里,我们描述了来自大肠杆菌的PurT转化酶的两个高分辨率X射线晶体学结构:一种形式与不可水解的ATP类似物AMPPNP复合,另一种形式与结合的AMPPNP和GAR结合。后一种结构具有特殊的意义,因为它代表了要确定参与嘌呤生物合成的ATP抓取超家族成员的第一个三元复合物,因此提供了有关参与核糖核苷酸结合的活性位点区域的新信息。特别是在PurT转化酶中,GAR底物通过Glu
  • purU, a source of formate for purT-dependent phosphoribosyl-N-formylglycinamide synthesis
    作者:P L Nagy、G M McCorkle、H Zalkin
    DOI:10.1128/jb.175.21.7066-7073.1993
    日期:1993.11

    A gene designated purU has been identified and characterized. purU is adjacent to tyrT at min 27.7 on the Escherichia coli chromosome. The gene codes for a 280-amino-acid protein. The C-terminal segment of PurU from residues 84 to 280 exhibits 27% identity with 5'-phosphoribosylglycinamide (GAR) transformylase, the product of purN. Primer extension mapping and assays of lacZ in a promoter probe vector identified two promoters giving mono- and bi-cistronic purU mRNA. Neither mRNA was regulated by purines. Mutations in either of two pairs of genes are required to block synthesis of 5'-phosphoribosyl-N-formylglycinamide (FGAR) from GAR: purN purT (purT encodes an alternative formate-dependent GAR transformylase) or purN purU. On the basis of the growth of purU, purN, and purU purN mutants, it appears that PurU provides the major source of formate for the purT-dependent synthesis of FGAR.

    已经鉴定和表征了一种被指定为purU的基因。purU位于大肠杆菌染色体的min 27.7处,与tyrT相邻。该基因编码一个280个氨基酸的蛋白质。PurU的C端残基84到280段与purN的产物5'-phosphoribosylglycinamide(GAR)转化酶具有27%的同源性。引物延伸映射和在启动子探针载体中的lacZ测定鉴定了两个启动子,分别产生单和双顺反式purU mRNA。两种mRNA都不受嘌呤调控。阻止从GAR合成5'-phosphoribosyl-N-formylglycinamide(FGAR)需要两对基因中的任何一对的突变:purN purT(purT编码一种另类的依赖甲酸的GAR转化酶)或purN purU。根据purU,purN和purU purN突变体的生长情况,看起来PurU提供了purT依赖的FGAR合成的甲酸的主要来源。
  • PurT-encoded Glycinamide Ribonucleotide Transformylase
    作者:James B. Thoden、Steven M. Firestine、Stephen J. Benkovic、Hazel M. Holden
    DOI:10.1074/jbc.m202251200
    日期:2002.6
    ribonucleotide transformylase, or PurT transformylase, functions in purine biosynthesis by catalyzing the formylation of glycinamide ribonucleotide through a catalytic mechanism requiring Mg(2+)ATP and formate. From previous x-ray diffraction analyses, it has been demonstrated that PurT transformylase from Escherichia coli belongs to the ATP-grasp superfamily of enzymes, which are characterized by three structural
    PurT编码的甘氨酰胺核糖核苷酸转化酶或PurT转化酶通过需要Mg(2+)ATP和甲酸酯的催化机制催化甘氨酰胺核糖核苷酸的甲酰化而在嘌呤生物合成中起作用。从先前的X射线衍射分析中,已经证明来自大肠杆菌的PurT转化酶属于酶的ATP酶超家族,其特征是被称为A,B和C结构域的三个结构基序。迄今为止,在所有已研究的ATP酶中,腺苷核苷酸配体总是固定在B结构域和C结构域之间,在某些情况下,例如生物素羧化酶和氨基甲酰磷酸合成酶,B结构域会在核苷酸上显着移动捆绑。在这里,我们提出了与各种腺苷核苷酸或包括Mg(2+)ATP,Mg(2 +)-5'-adenylylimidodiphosphate,Mg(2 +)-beta,γ在内的核苷酸类似物复合的PurT转化酶的系统化和高分辨率结构研究-亚甲基腺苷5'-三磷酸,Mg(2+)ATPgammaS或Mg(2+)ADP。综上所述,这些研究表明,由Lys-155描绘为Gln-165的所谓“
  • The <i>In Vitro</i> Redundant Enzymes PurN and PurT Are Both Essential for Systemic Infection of Mice in Salmonella enterica Serovar Typhimurium
    作者:Lotte Jelsbak、Mie I. B. Mortensen、Mogens Kilstrup、John E. Olsen
    DOI:10.1128/iai.00182-16
    日期:2016.7
    ABSTRACT

    Metabolic enzymes show a high degree of redundancy, and for that reason they are generally ignored in searches for novel targets for anti-infective substances. The enzymes PurN and PurT are redundant in vitro in Salmonella enterica serovar Typhimurium, in which they perform the third step of purine synthesis. Surprisingly, the results of the current study demonstrated that single-gene deletions of each of the genes encoding these enzymes caused attenuation (competitive infection indexes [CI] of <0.03) in mouse infections. While the Δ purT mutant multiplied as fast as the wild-type strain in cultured J774A.1 macrophages, net multiplication of the Δ purN mutant was reduced approximately 50% in 20 h. The attenuation of the Δ purT mutant was abolished by simultaneous removal of the enzyme PurU, responsible for the formation of formate, indicating that the attenuation was related to formate accumulation or wasteful consumption of formyl tetrahydrofolate by PurU. In the process of further characterization, we disclosed that the glycine cleavage system (GCV) was the most important for formation of C 1 units in vivo (CI = 0.03 ± 0.03). In contrast, GlyA was the only important enzyme for the formation of C 1 units in vitro . The results with the Δ gcvT mutant further revealed that formation of serine by SerA and further conversion of serine into C 1 units and glycine by GlyA were not sufficient to ensure C 1 formation in S . Typhimurium in vivo . The results of the present study call for reinvestigations of the concept of metabolic redundancy in S . Typhimurium in vivo .

    摘要 代谢酶具有高度冗余性,因此在寻找抗感染物质的新靶点时通常会忽略它们。PurN和PurT是冗余的 体外 在 肠炎沙门氏菌 它们在其中执行嘌呤合成的第三步。令人惊讶的是,目前的研究结果表明,编码这些酶的每个基因的单基因缺失都会导致小鼠感染的减弱(竞争性感染指数 [CI] 为 <0.03)。虽然Δ purT 突变体在培养的 J774A.1 巨噬细胞中的繁殖速度与野生型菌株一样快,但Δ purN purN 突变体的净繁殖在 20 小时内减少了约 50%。 purT 突变体的衰减在同时去除负责形成甲酸盐的 PurU 酶后消失,这表明衰减与甲酸盐积累或 PurU 消耗甲酰四氢叶酸浪费有关。在进一步鉴定的过程中,我们发现甘氨酸裂解系统(GCV)是形成 C 1 单位 在体内 (ci = 0.03 ± 0.03)。相比之下,GlyA 是形成 C 1 单位 在体外 .用 Δ gcvT 突变体的结果进一步表明,SerA 形成丝氨酸并进一步将丝氨酸转化为 C 1 单位和甘氨酸并不足以确保 C 1 在 S .Typhimurium 体内 .本研究的结果要求对 Tyimurium S . S .Typhimurium 体内 .
  • Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli
    作者:P Nygaard、J M Smith
    DOI:10.1128/jb.175.11.3591-3597.1993
    日期:1993.6

    We demonstrate here that Escherichia coli synthesizes two different glycinamide ribonucleotide (GAR) transformylases, both catalyzing the third step in the purine biosynthetic pathway. One is coded for by the previously described purN gene (GAR transformylase N), and a second, hitherto unknown, enzyme is encoded by the purT gene (GAR transformylase T). Mutants defective in the synthesis of the purN- and the purT-encoded enzymes were isolated. Only strains defective in both genes require an exogenous purine source for growth. Our results suggest that both enzymes may function to ensure normal purine biosynthesis. Determination of GAR transformylase T activity in vitro required formate as the C1 donor. Growth of purN mutants was inhibited by glycine. Under these conditions GAR accumulated. Addition of purine compounds or formate prevented growth inhibition. The regulation of the level of GAR transformylase T is controlled by the PurR protein and hypoxanthine.

    我们在这里证明大肠杆菌合成两种不同的甘氨酰核苷酸(GAR)转移酶,两种酶都催化嘌呤生物合成途径中的第三步。其中一种由先前描述的purN基因编码(GAR转移酶N),另一种是迄今未知的,由purT基因编码(GAR转移酶T)。我们分离了合成purN和purT编码酶缺陷的突变体。只有缺乏这两种基因的菌株需要外源嘌呤源才能生长。我们的结果表明,这两种酶都可能起到确保正常嘌呤生物合成的作用。体外测定GAR转移酶T的活性需要甲酸作为C1供体。甘氨酸抑制了purN突变体的生长,在这些条件下GAR积累。添加嘌呤化合物或甲酸可以防止生长抑制。GAR转移酶T水平的调节受PurR蛋白和次黄嘌呤的控制。
查看更多

同类化合物

[5-[(2-氨基乙酰基)氨基]-3,4-二羟基-四氢呋喃-2-基]甲氧基膦酸 [(2R,5R)-5-[(2-氨基乙酰基)氨基]-3,4-二羟基-四氢呋喃-2-基]甲氧基膦酸 [(2R,3S,4R,5R)-5-[(2-甲酰氨基乙酰基)氨基]-3,4-二羟基四氢呋喃-2-基]磷酸二氢甲酯 glycinamide ribonucleotide [(2S,3R,4R,5R)-5-[(2-aminoacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate [(2S,3S,4S,5R)-5-[(2-aminoacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate 5-phospho-beta-D-ribosyl-glycineamide N-glycyl-5-O-phosphonato-beta-D-ribofuranosylamine 2-[[4-[1-(2-amino-4-oxo-3H-quinazolin-6-yl)-3-[[2-[[3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]amino]-2-oxoethyl]amino]-2-hydroxypropan-2-yl]benzoyl]amino]pentanedioic acid [(2R,3R,4R,5R)-5-[(2-aminoacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate [(2R,3S,4S,5R)-5-[(2-aminoacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate [(2R,3R,4S,5R)-5-[(2-aminoacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate [(2S,3R,4S,5R)-5-[(2-aminoacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate [5-[(2-Formamidoacetyl)amino]-4-hydroperoxy-3-(2-methylcyclopropyl)oxyoxolan-2-yl]methyl dihydrogen phosphate 5'-phosphoribosyl-N-formylglycineamide [(2R,3S,4R,5R)-5-(4-carbamoyl-5-oxoimidazolidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate N-[5'-O-Phosphono-ribofuranosyl]-2-[2-hydroxy-2-[4-[glutamic acid]-N-carbonylphenyl]-3-[2-amino-4-hydroxy-quinazolin-6-YL]-propanylamino]-acetamide [(2R,5R)-5-[(2-formamidoacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate [(2R,5R)-5-[(2-aminoacetyl)amino]-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate 2-Amino-N-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(3-oxo-1,5-dihydro-3λ5-benzo[e][1,3,2]dioxaphosphepin-3-yloxymethyl)-tetrahydro-furan-2-yl]-malonamide Phosphoribosyl-N-formylglycineamide