Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si
作者:T. I. Kamins、R. Stanley Williams、Y. Chen、Y.-L. Chang、Y. A. Chang
DOI:10.1063/1.125852
日期:2000.1.31
Silicon “nanowires” can be formed by chemicalvapordeposition of Si onto Si substrates on which nanometer-scale, Ti-containing islands have been grown. At the growth temperatures used, the Ti-containing islands remain solid and anchored to the substrate, while the Sinanowires grow out from the islands, which remain at their bases. The nanowire growth mechanism, therefore, differs from the usual vapor-liquid-solid
Kinetic study of the reaction between copper(I) chloride and commercial silicon or silicides
作者:B. Gillot、H. Souha、D. Viale
DOI:10.1007/bf01142049
日期:——
The reaction of CuCl with silicon containing as impurities Al, Fe, Ca and Ti or with some silicides (Si2Ca, Si2Fe, Si2Ti) has been investigated in the temperature range 250–310 °C. For the reaction between CuCl and commercial Si, it has been found that at 282 °C, the aluminium promotes the reaction between Cu3Si and CuCl while its rate of consumption is greatly decreased by the presence of iron impurity
CuCl 与含有杂质 Al、Fe、Ca 和 Ti 的硅或与一些硅化物(Si2Ca、Si2Fe、Si2Ti)在 250-310°C 的温度范围内的反应已经进行了研究。对于CuCl和商品Si的反应,发现在282°C时,铝促进了Cu3Si和CuCl之间的反应,而铁杂质的存在会大大降低其消耗率。这两种杂质的共同作用提高了形成的铜硅合金的数量。在硅化物存在下,与 CuCl 的反应导致形成高度分散的铜。
New criteria for the applicability of combustion synthesis: The investigation of thermodynamic and kinetic processes for binary Chemical Reactions
Combustion synthesis is a novel technique that utilizes the exothermic heat of a chemical reaction to maintain the reaction and to rapidly prepare materials. But, hitherto, none of unified criterion for the validation of combustion synthesis has been proposed. Herein, we proposed the conditions need to be met. In terms of kinetics, at the adiabatic temperature (Tad), the diffusion distance of atoms
燃烧合成是一种利用化学反应的放热来维持反应并快速制备材料的新技术。但是,迄今为止,尚未提出用于验证燃烧合成的统一标准。在此,我们提出了需要满足的条件。就动力学而言,在绝热温度(T ad)下,原子的扩散距离(升Ť广告)在0.1 s内应大于反应物的粒径(d), 那是, 升Ť广告≥d。对于满足T ad / T m,L的系统≥1(其中T m,L是反应物的低熔点成分的熔点),液相的存在将原子的扩散距离从纳米显着增加到数十微米,从而成为标准升Ť广告≥d简化为T ad / T m,L≥在大多数情况下为1。在热力学方面,系统需要确保反应成分处于激活状态,即T ad / T m,H ≥0.7,其中T m,H是高熔点组分的熔点。本研究提出的SHS反应标准进一步提高了对SHS反应的理论理解,并为探索二元和多组分化合物的超快合成提供了指导。
Growth of TiSi2 from codeposited TiSix layers and interfacial layers
作者:R. T. Tung、K. Fujii、K. Kikuta、S. Chikaki、T. Kikkawa
DOI:10.1063/1.118880
日期:1997.5.5
silicidation rate, but promoted the nucleation of the final C54 TiSi2 phase. Predeposition and preannealing were also found to facilitate the growth of C54 TiSi2, as was growthfromcodeposited full TiSixlayers with Ti-rich compositions. The efficacy of the (interfacial) TiSixlayer was demonstrated for different temperature ramp rates and for a variety of substrates including undoped α-Si, preamorphized n+-Si
研究了通过共沉积在 Si 上产生的成分分布的硅化物形成特征。结果表明,在 Si 和 Ti 膜之间沉积的薄界面非晶 TiSix 层(x~0.5-1)导致观察到的 C49→C54 TiSi2 转变温度显着降低。非晶界面 TiSix 层的存在减慢了初始硅化速率,但促进了最终 C54 TiSi2 相的成核。还发现预沉积和预退火促进了 C54 TiSi2 的生长,正如来自具有富钛成分的共沉积全 TiSix 层的生长一样。(界面)TiSix 层的功效针对不同的温度斜坡速率和各种基板(包括未掺杂的 α-Si、预非晶 n+-Si 和预非晶 p+-Si)进行了证明。但是发现这种效应在单晶硅上不存在。讨论了观察到的效应的可能机制。
Formation of titanium silicides Ti5Si3 and TiSi2 by self-propagating combustion synthesis
作者:C.L. Yeh、W.H. Chen、C.C. Hsu
DOI:10.1016/j.jallcom.2006.05.131
日期:2007.4
Abstract Preparation of titanium silicides Ti 5 Si 3 and TiSi 2 from elemental powder compacts of their corresponding stoichiometries was conducted by self-propagating high-temperature synthesis (SHS) in this study. Effects of the sample green density, preheating temperature, and starting stoichiometry on combustion characteristics, as well as on product composition were studied. Experimental evidence
摘要 在本研究中,通过自蔓延高温合成 (SHS) 从相应化学计量的元素粉末压块制备硅化钛 Ti 5 Si 3 和 TiSi 2 。研究了样品生坯密度、预热温度和起始化学计量对燃烧特性以及产品组成的影响。实验证据表明,自持燃烧前沿在点火时建立,随后以稳定的方式穿过整个样品。火焰锋通过后,样品中发生的进一步相变导致出现后燃辉光。由于燃烧温度超过了 Ti-Si 二元混合物的最低共晶点 (1330 °C),从化学计量的粉末压块形成 Ti 5 Si 3 主要由固-液机制控制,包括固体反应物的溶解和硅化物产物的沉淀。此外,在该研究中实现了产生单相硅化物 Ti 5 Si 3 的完全转化。相反,Ti + 2Si 压块内反应元素之间的相互作用受固态机制控制,因为它们的反应温度低于 Ti-Si 共晶点 1330 °C。XRD 分析将二硅化物 TiSi 2 鉴定为 Ti + 2Si 样品最终产品中的主要成分。然而,除了