摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

dimethyl 3,4-di-p-tolylcyclobutane-1,2-dicarboxylate | 36650-60-9

中文名称
——
中文别名
——
英文名称
dimethyl 3,4-di-p-tolylcyclobutane-1,2-dicarboxylate
英文别名
dimethyl (1R,2S,3R,4S)-3,4-bis(4-methylphenyl)cyclobutane-1,2-dicarboxylate
dimethyl 3,4-di-p-tolylcyclobutane-1,2-dicarboxylate化学式
CAS
36650-60-9
化学式
C22H24O4
mdl
——
分子量
352.43
InChiKey
XIJVQPNJIIXJQZ-JVSBHGNQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.9
  • 重原子数:
    26
  • 可旋转键数:
    6
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.36
  • 拓扑面积:
    52.6
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为产物:
    描述:
    4-methylcinnamic acid 在 tris(4-pyridyl)1,3,5-triazine-based Pd(II) 对甲苯磺酸 作用下, 以 重水 为溶剂, 反应 15.0h, 生成 dimethyl 3,4-di-p-tolylcyclobutane-1,2-dicarboxylate
    参考文献:
    名称:
    水溶性Pd纳米笼对反肉桂酸酯的光二聚化的模板化
    摘要:
    水溶性八面体的Pd纳米笼作为反应容器模板取代的光二反式水-肉桂酸甲基酯。反式的主客体复合物的辐照-肉桂酸甲酯与Pd纳米笼形成了除相应的顺式异构体外还选择性形成顺头二聚体的现象。这些结果表明,客体分子以选择性的方式预取向,其中亲水性酯基面对水而疏水性芳基被塞在主体腔内。这样的取向发生在纳米笼外部和内部之间的疏水-亲水界面处。主体和客体之间的弱分子间CH-π和π-π相互作用可能是反应物烯烃在短的激发态寿命期间缺乏迁移率的原因。
    DOI:
    10.1021/jo0617722
点击查看最新优质反应信息

文献信息

  • Using non-covalent interactions to direct regioselective 2+2 photocycloaddition within a macrocyclic cavitand
    作者:Nga Nguyen、Aspen Rae Clements、Mahesh Pattabiraman
    DOI:10.1039/c5nj02376a
    日期:——
    completely from a head-to-head dimer to a head-to-tail dimer. The reactions were also stereoselective in most cases. Stoichiometry experiments were performed to explore relative stabilities of the complexes, which indicate that the ternary complex is more stable than others. Selectivity in the photocycloaddition reaction was also applied retrospectively to deduce intermolecular orientations. Time-dependent
    客体在三元包含复合物中的相对取向受主客体和客客体超分子相互作用的支配。可以使用非共价相互作用来控制大环空分子(γ-环糊精)中包含的两个烯烃之间的2 + 2光环加成反应的选择性。在此手稿中,我们报告了使用非共价相互作用的空泡蛋白介导的烷基肉桂酸酯之间区域选择性的控制。使用这种方法,我们已经表明区域选择性可以完全从头对头二聚体切换到头对尾二聚体。在大多数情况下,反应也是立体选择性的。进行了化学计量学实验以探索配合物的相对稳定性,这表明三元配合物比其他三元配合物更稳定。还追溯应用了光环加成反应中的选择性以推断分子间取向。我们进行的时间依赖性转换研究表明,所观察到的烯烃的反应性代表了复杂介质整体中的分子间取向。通过实验观察和计算研究来定性地了解复杂结构以及弱相互作用的相对强度。以淤浆形式研究了复合物的反应,反应控制的程度表明了类似固态的行为。通过实验观察和计算研究来定性地了解复杂结构以及弱相互作用
  • Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visible‐Light Catalysis
    作者:Tao Lei、Chao Zhou、Xiang‐Zhu Wei、Bing Yang、Bin Chen、Chen‐Ho Tung、Li‐Zhu Wu
    DOI:10.1002/chem.201804946
    日期:2019.1.14
    [2+2] Photocycloaddition of two olefins is a general method to assemble the core scaffold, cyclobutane, found in numerous bioactive molecules. A new approach to synthesize cyclobutanes through multicomponent cascade reactions by merging aldol reaction and Witting reaction with visiblelight‐induced [2+2] cycloaddition is reported. An array of cyclobutanes with high selectivity has been achieved from
    [2 + 2]两种烯烃的光环加成是组装存在于许多生物活性分子中的核心骨架环丁烷的一般方法。报道了一种通过多组分级联反应,将羟醛和Witting反应与可见光诱导的[2 + 2]环加成反应相结合来合成环丁烷的新方法。在可见光照射下催化量的(fac -tris(2-苯基吡啶吡啶并-C 2,N)铱)由市售的醛,酮(或磷化磷)和烯烃制成了一系列具有高选择性的环丁烷([Ir(ppy)3 ])在室温下。对照实验和光谱研究表明,三重态-三重态能量从激发的[Ir(ppy)3由醛和酮或醛和磷酰化原位生成的烯酮] *负责这些简单而有效的多组分转化。
  • General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible‐Light Catalysis
    作者:Tao Lei、Chao Zhou、Mao‐Yong Huang、Lei‐Min Zhao、Bing Yang、Chen Ye、Hongyan Xiao、Qing‐Yuan Meng、Vaidhyanathan Ramamurthy、Chen‐Ho Tung、Li‐Zhu Wu
    DOI:10.1002/anie.201708559
    日期:2017.11.27
    which are building blocks for a variety of biologically active molecules and natural products. However, most attempts at the above [2+2] addition have focused on solidstate, molten‐state, or host–guest systems under ultravioletlight irradiation in order to overcome the competition of facile geometric isomerization of nonrigid olefins. We report a general and simple method to realize the intermolecular
    [2 + 2]光环加成反应(例如,查耳酮和肉桂酸衍生物的二聚化)是构建环丁烷的独特策略,环丁烷是多种生物活性分子和天然产物的基础。然而,为了克服非刚性烯烃的简便几何异构化的竞争,大多数对上述[2 + 2]的尝试都集中在紫外光照射下的固态,熔融态或主客体系统。我们报告了一种通用且简单的方法来实现这些无环烯烃的分子间[2 + 2]二聚反应,以在可见光下以高度区域和非对映选择性的方式构建环丁烷,这为长期存在的问题提供了有效的解决方案。
  • Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure
    作者:Tomáš Hartman、Martina Reisnerová、Josef Chudoba、Eva Svobodová、Nataliya Archipowa、Roger Jan Kutta、Radek Cibulka
    DOI:10.1002/cplu.202000767
    日期:2021.3
    and investigated their application in light‐dependent oxidative cycloelimination of cyclobutanes. Detailed mechanistic investigations with a coumarin dimer as a model substrate reveal that the reaction preferentially occurs via the triplet‐born radical pair after electron transfer from the substrate to the triplet state of an alloxazinium salt. The very photostable 7,8‐dimethoxy derivative is a superior
    黄鎓盐经常用于有机催化,但迄今为止尚未系统地研究它们在光氧化还原催化中的应用。我们合成了一系列在 7 位和 8 位具有不同取代基的 5-乙基-1,3-二甲基恶嗪盐,并研究了它们在环丁烷的光依赖氧化环消除中的应用。以香豆素二聚体作为模型底物的详细机理研究表明,在电子从底物转移到咯嗪盐的三重态后,反应优先通过三重态自由基对发生。非常光稳定的 7,8-二甲氧基衍生物是一种优异的催化剂,具有足够高的氧化能力 ( E * = 2.26 V),允许转化各种环丁烷(具有E ox高达 2.05 V) 的高产率。甚至诸如全反式二甲基 3,4-双(4-甲氧基苯基)环丁烷-1,2-二羧酸酯之类的化合物也可以转化,由于顺式中庞大的相邻取代基导致缺少预活化,因此其打开需要高活化能-位置。
  • Templating Photodimerization of <i>trans</i>-Cinnamic Acid Esters with a Water-Soluble Pd Nanocage
    作者:S. Karthikeyan、V. Ramamurthy
    DOI:10.1021/jo0617722
    日期:2007.1.1
    trans-cinnamic acid methyl esters in water. Irradiation of the host−guest complexes of trans-cinnamic acid methyl esters with the Pd nanocage resulted in selective formation of a syn head−head dimer in addition to the corresponding cis isomer. These results suggest that the guest molecules are preoriented in a selective fashion with the hydrophilic ester group facing water and the hydrophobic aryl group
    水溶性八面体的Pd纳米笼作为反应容器模板取代的光二反式水-肉桂酸甲基酯。反式的主客体复合物的辐照-肉桂酸甲酯与Pd纳米笼形成了除相应的顺式异构体外还选择性形成顺头二聚体的现象。这些结果表明,客体分子以选择性的方式预取向,其中亲水性酯基面对水而疏水性芳基被塞在主体腔内。这样的取向发生在纳米笼外部和内部之间的疏水-亲水界面处。主体和客体之间的弱分子间CH-π和π-π相互作用可能是反应物烯烃在短的激发态寿命期间缺乏迁移率的原因。
查看更多

同类化合物

3,4-双(4-羟基苯基)环丁烷-1,2-二羧酸 3,4-二苯基环丁烷-1,2-二羧酸 1-[2,3-二甲基-4-(2,4,5-三甲氧基苯基)环丁基]-2,4,5-三甲氧基苯 (2,3,4-三苯基环丁基)苯 DL-(1R,2R,3S,4S)-3,4-bis(4-methoxyphenyl)cyclobutane-1,2-dicarboxylic acid tetrakis-1,2,3,4-(4’- carboxyphenyl)cyclobutane 3,3'-dinitro-β-truxinic acid diphenyl 3,4-diphenylcyclobutane-1,2-dicarboxylate DL-(1R,2R,3S,4S)-diphenyl 3,4-diphenylcyclobutane-1,2-dicarboxylate 3,4-bis(2-hydroxy-5-methylphenyl)cyclobutane-1,2-dicarboxylic acid N-(n-pentyl)-3β,4β-bis(3',4'-dimethoxyphenyl)-1α,2α-cyclobutanedicarboximide trans-1,2-diphenylbicyclo[3.1.0.02,4]hexane 8β,8'α-dimethyl-7α,7'β-bis(3-methoxy-4-hydroxyphenyl)cyclobutane 4,4'-((1R,2R,3S,4S)-3,4-dimethylcyclobutane-1,2-diyl)bis(methoxybenzene) caracasandiamide 3β,4β-bis(3',4'-dimethoxyphenyl)-1α-carboxy-2α-<butyl>cylobutanecarboxamide quinic acid diester of 3,4,3',4'-tetrahydroxy-β-truxinic acid 3,3′-difluoro-β-truxinic acid endiandrin B 3,3-Dimethyl-2,4-diphenyl-tricyclo[3.2.0.02,4]heptane (1R,6S,7S,8R)-7,8-Diphenyl-bicyclo[4.2.0]octane 1,5-Diphenyl-quadricyclan dimethyl t-3,t-4-di-(3,4,5-trimethoxyphenyl)cyclobutane-r-1,c-2-dicarboxylate (±)-(1R,5S,6R,7S)-6,7-bis(4-methoxyphenyl)-3-oxabicyclo[3.2.0]heptane 2-((1R,2S,3R,4R)-2-methyl-2-nitro-3,4-diphenylcyclobutyl)acetaldehyde 1α,2α-Di-(2-methoxy-phenyl)-cyclobutan-dicarbonsaeure-(3β,4β)-dimethylester o,o'-Dimethyl-β-truxillsaeuredimethylester 1,2-diisobutyryl-3,4-diphenyl-cyclobutane 3,4-bis(3,4-dimethylphenyl)cyclobutane-1,2-dicarboxylic acid (17S,18R,19S,20R)-18,19-bis(3,4-dimethylphenyl)-15,22-diazahexacyclo[21.2.2.211,14.12,6.017,20.010,30]triaconta-1(25),2,4,6(30),7,9,11(29),12,14(28),23,26-undecaene-16,21-dione 3,3-Dimethyl-2,4-diphenyl-endo-tricyclo<3.3.0.02,4>oct-6-en ((1S,2R,3S,4R)-3-Hydroxymethyl-1,4-diphenyl-bicyclo[2.2.0]hex-2-yl)-methanol (1R,7S,8R,11S)-8,11-Diphenyl-3,5-dioxa-4-thia-tricyclo[5.4.0.08,11]undecane 4,4-dioxide 4a,4b-Bis(4-methoxyphenyl)decahydrobiphenylene-1,8-dione 4a,4b-Bis(4-nitrophenyl)decahydrobiphenylene-1,8-dione 8-Methyl-4,4a-diphenyltetrahydro-1h,5h-3,4,4b-(methanetriyl)cyclopenta[1,3]cyclopropa[1,2-b]pyridin-2(3h)-one (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(4-tert-butyl-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester (S,S,S,S)-3,4-bis(2-diphenylphosphinylphenyl)-1,2-cyclobutanedimethyl di(diphenylphosphine) (1R,2R,3R,4R)-3,4-Bis-[2-(diphenyl-phosphinoyl)-phenyl]-cyclobutane-1,2-dicarboxylic acid diethyl ester (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(3,5-dimethyl-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester 4,4'-(3,4-diphenyl-cyclobutane-1,2-diyl)-bis-benzo[h]quinoline 4,4'-(3,4-diphenyl-cyclobutane-1,2-diyl)-bis-benzo[h]quinoline 3,4-diphenyl-3,4-dichlorocyclobutanodicarbox-1,2-dianilide (1S,5R,6R)-3-butyl-6,7-bis(2-hydroxyphenyl)-3-azabicyclo[3.2.0]heptane-2,4-dione (1R,2R,3R,4R)-3,4-Bis-{2-[bis-(4-methoxy-phenyl)-phosphinoyl]-phenyl}-cyclobutane-1,2-dicarboxylic acid diethyl ester 1,2-Diphenyl-1,2,2a,10b-tetrahydro-cyclobuta[l]phenanthrene all-cis-1,2-Dibenzyl-3,4-diphenylcyclobutan (3,4-diphenylcyclobutane-1,2-diyl)bis(phenylmethanone) 1,2-dibenzoyl-3,4-diphenyl-cyclobutane