A composite material that includes a host matrix and a plurality of dispersed nanoparticles within the host matrix. Each of the plurality of nanoparticles may include a halogenated outer coating layer that seals the nanoparticle and prevents agglomeration of the nanoparticles within the host matrix. The invention also includes a process of forming the composite material. Depending on the nanoparticle material, the composite material may have various applications including, but not limited to, optical devices, windowpanes, mirrors, mirror panels, optical lenses, optical lens arrays, optical displays, liquid crystal displays, cathode ray tubes, optical filters, optical components, all these more generally referred to as components.
Optical polymer nanocomposite substrates with surface relief structures
申请人:——
公开号:US20030180029A1
公开(公告)日:2003-09-25
A solid substrate comprising a first major surface, a second major surface juxtaposed from and parallel or substantially parallel to the first major surface, wherein the substrate has a plurality of surface relief structures, located on the substrate between the first and second major surfaces, and extending over the substrate; wherein the solid substrate comprises a host matrix, and at least one nanoparticle within the host matrix.
A process of forming a composite material, comprising at least partially coating at least one nanoparticle with a halogenated outer layer, and dispersing the at least one at least partially coated nanoparticle into a host matrix material, wherein the composite material has a first major surface and a second major surface juxtaposed from and parallel or substantially parallel to the first major surface; and wherein the composite material has a plurality of surface relief structures, located between the first and second major surfaces, and extending over the surface of the composite material.
An optical waveguide comprising a core for transmitting incident light, a cladding material disposed about the core, and a plurality of surface relief structures located on the surface of the optical waveguide, wherein the core of the optical waveguide comprises a host matrix and at least one nanoparticle dispersed within the host matrix.
Thermal polymer nanocomposites
申请人:——
公开号:US20030174994A1
公开(公告)日:2003-09-18
The present invention is directed to a composite material comprising a nanoporous polymer matrix and a plurality of nanoparticles dispersed within said matrix, wherein the nanoparticles possess specified thermal properties. The resulting nanoporous polymer nanocomposite is an optical medium with tunable and controllable thermal properties, including the coefficient of thermal expansion (CTE), the thermal conductivity, and the thermooptic coefficient. Various optical articles can be made with such nanocomposite materials
[EN] POLYMER NANOCOMPOSITES FOR OPTICAL APPLICATIONS<br/>[FR] NANOCOMPOSITES DE POLYMERES DESTINES A DES APPLICATIONS OPTIQUES
申请人:PHOTON X INC
公开号:WO2003070816A1
公开(公告)日:2003-08-28
A composite material that includes a host matrix and a plurality of dispersed nanoparticles within the host matrix. Each of the plurality of nanoparticles may include a halogenated outer coating layer that seals the nanoparticle and prevents agglomeration of the nanoparticles within the host matrix. The invention also includes a process of forming the composite material. Depending on the nanoparticle material, the composite material may have various applications including, but not limited to, optical devices, windowpanes, mirrors, mirror panels, optical lenses, optical lens arrays, optical displays, liquid crystal displays, cathode ray tubes, optical filters, optical components, all these more generally referred to as components.