摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-amino-2,6-dichlorophenyl phosphate | 124219-30-3

中文名称
——
中文别名
——
英文名称
4-amino-2,6-dichlorophenyl phosphate
英文别名
(4-Amino-2,6-dichlorophenyl) dihydrogen phosphate
4-amino-2,6-dichlorophenyl phosphate化学式
CAS
124219-30-3
化学式
C6H6Cl2NO4P
mdl
——
分子量
257.998
InChiKey
WRDYCKRALGQXOH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.8
  • 重原子数:
    14
  • 可旋转键数:
    2
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    92.8
  • 氢给体数:
    3
  • 氢受体数:
    5

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    4-amino-2,6-dichlorophenyl phosphate 在 magnesium chloride bovine serum albumine 、 Tris buffer 作用下, 生成 2,6-二氯-4-氨基苯酚
    参考文献:
    名称:
    Theory and Practice of Enzyme Bioaffinity Electrodes. Direct Electrochemical Product Detection
    摘要:
    The use of enzyme labeling techniques to convert biorecognition events into high sensitivity electrochemical signals may follow two different strategies. One, in which the current is the electrocatalytic response of a redox couple serving as cosubstrate to a redox enzyme label and another that consists in the detection of an electrochemically active product of the enzyme label. The theoretical relationships that link, in the latter case, the electrochemical current response to the amount of recognized labeled target analyte are established for steady-state diffusion-convection chronoamperometric regimes. Two governing parameters thus emerge. One measures the Michaelis-Menten competition in the enzyme kinetics. The other characterizes the competition between the enzymatic kinetics and the diffusion of the substrate. The electrochemical response is finally related to the labeled target analyte concentration in solution through the recognition isotherm. The direct electrochemical product detection thus provides a route to the characteristics of the recognition isotherm, which serves as a calibration curve in analytical applications. The establishment of further theoretical relationships allows one to surmise the increase in sensitivity that may be obtained by using cyclic voltammetry instead of steady-state chronoamperometry in standard electrochemical cells or by accumulation of the enzyme-product in cells of small volume/surface ratios. The theoretical predictions are tested with the example of the avidin-biotin recognition process in a system that involves alkaline phosphatase as enzyme label and 4-amino-2,6-dichlorophenyl phosphate as substrate, generating 4-amino-2,6-dichlorophenol as electrochemically active product. The advantages of the dichloro-substitution are discussed. The theoretical analysis is a requisite for a rational and realistic discussion of the analytical performances of the steady-state chronoamperometric and cyclic voltammetric approaches. These are shown to compare favorably with the best heterogeneous bioaffinity assays so far reported.
    DOI:
    10.1021/ja7102845
  • 作为产物:
    描述:
    (4-nitro-2,6-dichlorophenyl)-dibenzyl phosphate 在 Lindlar's catalyst 氢气 作用下, 以 甲醇 为溶剂, 20.0 ℃ 、100.0 kPa 条件下, 反应 12.0h, 以67%的产率得到4-amino-2,6-dichlorophenyl phosphate
    参考文献:
    名称:
    Theory and Practice of Enzyme Bioaffinity Electrodes. Direct Electrochemical Product Detection
    摘要:
    The use of enzyme labeling techniques to convert biorecognition events into high sensitivity electrochemical signals may follow two different strategies. One, in which the current is the electrocatalytic response of a redox couple serving as cosubstrate to a redox enzyme label and another that consists in the detection of an electrochemically active product of the enzyme label. The theoretical relationships that link, in the latter case, the electrochemical current response to the amount of recognized labeled target analyte are established for steady-state diffusion-convection chronoamperometric regimes. Two governing parameters thus emerge. One measures the Michaelis-Menten competition in the enzyme kinetics. The other characterizes the competition between the enzymatic kinetics and the diffusion of the substrate. The electrochemical response is finally related to the labeled target analyte concentration in solution through the recognition isotherm. The direct electrochemical product detection thus provides a route to the characteristics of the recognition isotherm, which serves as a calibration curve in analytical applications. The establishment of further theoretical relationships allows one to surmise the increase in sensitivity that may be obtained by using cyclic voltammetry instead of steady-state chronoamperometry in standard electrochemical cells or by accumulation of the enzyme-product in cells of small volume/surface ratios. The theoretical predictions are tested with the example of the avidin-biotin recognition process in a system that involves alkaline phosphatase as enzyme label and 4-amino-2,6-dichlorophenyl phosphate as substrate, generating 4-amino-2,6-dichlorophenol as electrochemically active product. The advantages of the dichloro-substitution are discussed. The theoretical analysis is a requisite for a rational and realistic discussion of the analytical performances of the steady-state chronoamperometric and cyclic voltammetric approaches. These are shown to compare favorably with the best heterogeneous bioaffinity assays so far reported.
    DOI:
    10.1021/ja7102845
点击查看最新优质反应信息

文献信息

  • Method and test composition for determination of enzyme activity
    申请人:Kyowa Medex Co. Ltd.
    公开号:EP0317243A2
    公开(公告)日:1989-05-24
    Disclosed is a method for determination of an activity of γ-glutamyl transpeptidase, leucine aminopeptidase, alanine aminopeptidase, cystine aminopeptidase, X factor as a coagulation factor, thrombin, plasmin of plasminogen series, kallikrein, chymotrypsin, alkali phosphatase, N-acetyl glucosaminase and amylase, by allowing a particular substrate to act on the enzyme to thereby form an enhancer; oxidizing a chromogen by an oxidase in the presence of the enhancer and oxygen to form a pigment; and determining the pigment. Also disclosed is a test composition for carrying out the determination.
    本发明公开了一种测定γ-谷酰转肽酶、亮肽酶、丙肽酶、胱肽酶、作为凝血因子的 X 因子、凝血酶、纤溶酶原系列的纤溶酶、胰凝乳蛋白酶、糜蛋白酶、碱式磷酸酶、N-乙酰葡糖胺酶和淀粉酶活性的方法,其方法是让特定的底物作用于酶,从而形成增强剂;在增强剂和氧气存在的情况下,用氧化酶氧化色原,形成色素;以及测定色素。还公开了一种用于进行测定的试验组合物。
查看更多

同类化合物

(11bR,11''bR)-2,2''-[氧双(亚甲基)]双[4-羟基-4,4''-二氧化物-二萘并[2,1-d:1'',2''-f][1,3,2]二氧磷杂七环 (11aR)-10,11,12,13-四氢-5-羟基-3,7-二-1-萘-5-氧化物-二茚基[7,1-de:1'',7''-fg][1,3,2]二氧杂磷杂八环 鲸蜡基磷酸-鲸蜡基磷酸二乙醇胺 高氯酸N,N,N',N',N'',N'',N''',N'''-八甲基二磷四酰胺(1:1:2)锂 非对称二乙基二(二甲基胺基)焦磷酸酯 非4-烯-5-基二苯基磷酸酯 雷公藤甲素O-甲基磷酸酯二苄酯 阿扎替派 间苯二酚双[二(2,6-二甲基苯基)磷酸酯] 锌四戊基二(磷酸酯) 银(1+)二苄基磷酸酯 铵4-(2-甲基-2-丁炔基)苯基4-(2-甲基-2-丙基)苯基磷酸酯 铵2-乙基己基磷酸氢酯 铵2,3-二溴丙基磷酸酯 钾二己基磷酸酯 钾二十烷基磷酸酯 钾二乙基磷酸酯 钾二(8-甲基壬基)磷酸酯 钾[5,7,7-三甲基-2-(1,3,3-三甲基丁基)辛基]磷酸酯 钾2-己基癸基磷酸酯 钴(2+)十三烷基磷酸酯 钡4,4-二乙氧基-2,3-二羟基丁基磷酸酯 钡1,3-二羟基-2-丙基磷酸酯 钠辛基氢磷酸酯 钠癸基氢磷酸酯 钠异丁基氢磷酸酯 钠二苄基磷酸酯 钠二戊基磷酸酯 钠二(十八烷基)磷酸酯 钠二(2-丁氧乙基)磷酸酯 钠O,O-二乙基磷酰蔷薇l烯酸酯 钠4-氨基苯基氢磷酸酯水合物(1:1:1) 钠3,6,9,12,15-五氧杂二十八碳-1-基氢磷酸酯 钠2-乙氧基乙基磷酸酯 钠2,3-二溴丙基磷酸酯 钛酸酯偶联剂NDZ-201 钙敌畏 钙二钠氟-二氧代-氧代膦烷碳酸盐 钙3,9-二氧代-2,4,8,10-四氧杂-3lambda5,9lambda5-二磷杂螺[5.5]十一烷3,9-二氧化物 野尻霉素6-磷酸酯 酸式磷酸戊酯 酚酞单磷酸酯 酚酞单磷酸环己胺盐 酚酞二磷酸四钠盐 酚酞二磷酸四钠 辛基磷酸酯 辛基二氯膦酸酯 辛基二氯丙基磷酸酯 辛基二丙基磷酸酯 赤藓糖醇4-磷酸酯