摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

silane | 13587-51-4

中文名称
——
中文别名
——
英文名称
silane
英文别名
Deuteriosilane
silane化学式
CAS
13587-51-4
化学式
H4Si
mdl
——
分子量
33.1093
InChiKey
BLRPTPMANUNPDV-MICDWDOJSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    63 °C

计算性质

  • 辛醇/水分配系数(LogP):
    -1.45
  • 重原子数:
    1
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

SDS

SDS:9d138e55d248526011c57b9749ad5641
查看

反应信息

  • 作为产物:
    描述:
    lithium aluminium deuteride 、 碘硅烷二丁醚 为溶剂, 生成 silane
    参考文献:
    名称:
    H3SiD 和单同位素 H370GeD 在 600 到 1100 cm−1 区域内的高分辨率傅里叶变换光谱:ν3、ν5 和 ν6 基本原理分析
    摘要:
    摘要 H 3 SiD 和单同位素 H 3 70 GeD 的傅立叶变换红外光谱在 600- 到 1100-cm -1 区域中以 0.005 cm -1 的分辨率记录,覆盖了基波 ν 3 、ν 5 和 ν 6 。已经为每个分子测量并分配了大约 3000 个正常和允许扰动的跃迁。基态常数已确定至六性系数。发现 ν 3 、ν 5 和 ν 6 之间发生强相互作用,这需要同时进行振动分析。选择了一个模型,该模型通过对角化方法解释了三个激发振动态之间的所有科里奥利型耦合。实验数据分别拟合到 H 3 SiD (σ = 7.4 × 10 -3 cm -1 ) 和 H 3 70 GeD (σ = 6.4 × 10 -3 cm -1 ) 的 32 和 31 个激发态参数。振动基本原理 ν 0 ( H 3 SiD H 3 70 GeD ) 确定为: ν 3 = 912.997(1) 821.598(1) , ν 5
    DOI:
    10.1016/0022-2852(86)90077-9
点击查看最新优质反应信息

文献信息

  • Proton affinity and heat of formation of silylene
    作者:Seung Koo Shin、J. L. Beauchamp
    DOI:10.1021/j100399a009
    日期:1986.4
  • Gas-phase homolytic substitution reactions of hydrogen atoms at silicon centers
    作者:L. Fabry、P. Potzinger、B. Reimann、A. Ritter、H. P. Steenbergen
    DOI:10.1021/om00137a030
    日期:1986.6.1
  • Direct kinetic studies of SiH<sub>3</sub>+SiH<sub>3</sub>, H, CCl<sub>4</sub>, SiD<sub>4</sub>, Si<sub>2</sub>H<sub>6</sub>, and C<sub>3</sub>H<sub>6</sub>by tunable infrared diode laser spectroscopy
    作者:S. K. Loh、J. M. Jasinski
    DOI:10.1063/1.461707
    日期:1991.10
    Gas phase reactions of silyl radical, SiH3, are investigated at room temperature using tunable diode laser flash kinetic spectroscopy. Photolytic generation of silyl at 193 and 248 nm is demonstrated using several different precursor systems. The silyl recombination reaction, SiH3+SiH3→Si2H6, is studied by quantitative measurement of SiH3 and attendant product densities. Analysis yields a refinement of the rate constant, krc=(7.9±2.9)×10−11 cm3 molecule−1 s−1. By modeling silyl densities following photolysis of HCl in SiH4, bimolecular rate constants for H+SiH3 and H+SiH4 are determined to be (2±1)×10−11 and (2.5±0.5)×10−13 cm3 molecule−1 s−1, respectively. Reactions of SiH3 with SiD4, Si2H6, CCl4, and C3H6 (propylene) are studied under pseudo-first-order conditions. Derived upper limits to the rate constants show these reactions to be slow at room temperature. The data demonstrate the reactivity of silyl with open-shell (radical) species and the general inertness of silyl toward closed shell molecules. Under typical chemical vapor deposition conditions, SiH3 is, therefore, a kinetically long-lived species in the gas phase and consequently a potentially important film forming species under plasma and photochemical deposition conditions.
  • H/D isotope exchange reaction of SiH<sup>+</sup><sub>3</sub> with SiD<sub>4</sub> and SiD<sup>+</sup><sub>3</sub> with SiH<sub>4</sub>: Evidence for hydride stripping reaction
    作者:W. D. Reents、M. L. Mandich
    DOI:10.1063/1.458860
    日期:1990.9
    We have measured the reaction rates and product distributions for SiHxD+3−x reactions with SiH4 and SiD4. The measured reaction rates for SiH+3 and SiD4 (26.1±1.0×10−10 cc/molecule s) and for SiD+3 and SiH4 (23.1±1.0×10−10 cc/molecule s) are greater than the calculated Langevin collision rate (12.3–12.4×10−10 cc/molecule s). Also, the product distribution observed for H/D exchange is nonstatistical. Dual, competing reaction mechanisms are invoked to account for these observations: reaction via formation of an ion-molecule complex and reaction via long-range hydride stripping. Using an expected product distribution calculated from reaction thermochemistries, the relative contributions of the two mechanisms is obtained for each reaction examined. The reaction rate for the ion-molecule complex mechanism is calculated to be at the Langevin collision rate within experimental error. The reaction rate for the stripping mechanism varies from 1–4×10−10 cc/molecule s (10–30% of the Langevin collision rate) for the mixed isotope ions SiH2D+ and SiHD+2 to 12–18×10−10 cc/molecule s (100%–150% of the Langevin collision rate) for the isotopically pure ions SiH+3 and SiD+3. The faster than Langevin reaction rates lower the expected low field mobility of SiH+3 in silane plasmas by 70% to ∼340 cm2 Torr/V s.
  • High-resolution Fourier transform spectra of H3SiD and monoisotopic H370GeD in the region 600 to 1100 cm−1: Analysis of the ν3, ν5, and ν6 fundamentals
    作者:H Bürger、A Rahner、G Tarrago、J Kauppinen
    DOI:10.1016/0022-2852(86)90077-9
    日期:1986.11
    Abstract Fourier Transform infrared spectra of H 3 SiD and monoisotopic H 3 70 GeD have been recorded with a resolution of 0.005 cm −1 in the 600- to 1100-cm −1 region covering the fundamentals ν 3 , ν 5 , and ν 6 . About 3000 normal and perturbation-allowed transitions have been measured and assigned for each molecule. Ground state constants have been determined up to sextic coefficients. Strong interactions
    摘要 H 3 SiD 和单同位素 H 3 70 GeD 的傅立叶变换红外光谱在 600- 到 1100-cm -1 区域中以 0.005 cm -1 的分辨率记录,覆盖了基波 ν 3 、ν 5 和 ν 6 。已经为每个分子测量并分配了大约 3000 个正常和允许扰动的跃迁。基态常数已确定至六性系数。发现 ν 3 、ν 5 和 ν 6 之间发生强相互作用,这需要同时进行振动分析。选择了一个模型,该模型通过对角化方法解释了三个激发振动态之间的所有科里奥利型耦合。实验数据分别拟合到 H 3 SiD (σ = 7.4 × 10 -3 cm -1 ) 和 H 3 70 GeD (σ = 6.4 × 10 -3 cm -1 ) 的 32 和 31 个激发态参数。振动基本原理 ν 0 ( H 3 SiD H 3 70 GeD ) 确定为: ν 3 = 912.997(1) 821.598(1) , ν 5
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
hnmr
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台