摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(+/-)-aspidofractinine

中文名称
——
中文别名
——
英文名称
(+/-)-aspidofractinine
英文别名
——
(+/-)-aspidofractinine化学式
CAS
——
化学式
C19H24N2
mdl
——
分子量
280.413
InChiKey
BIBZWCCWSCCFBB-CADBVGFASA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.53
  • 重原子数:
    21.0
  • 可旋转键数:
    0.0
  • 环数:
    7.0
  • sp3杂化的碳原子比例:
    0.68
  • 拓扑面积:
    15.27
  • 氢给体数:
    1.0
  • 氢受体数:
    2.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    (+/-)-20-oxoaspidofractinine 在 作用下, 以74%的产率得到(+/-)-aspidofractinine
    参考文献:
    名称:
    APPLICATION OF THE NEW ACYLATING AGENTS [PhS(O)–CH=C(OMe)Cl AND PhSO2–CH=C(OMe)Cl] TO THE SYNTHESIS OF INDOLE ALKALOIDS. A TOTAL SYNTHESIS OF (±)-ASPIDOFRACTININE
    摘要:
    事实证明,新的酰化剂[PhS(O)-CH=C(OMe)Cl 和相应的砜]可以通过双碳迈克尔受体将乙酰基诱导到羰基的 α 位,并成功地应用于 (±)-aspidofractinine 的全合成。
    DOI:
    10.1246/cl.1986.927
点击查看最新优质反应信息

文献信息

  • Collective Total Synthesis of Aspidofractinine Alkaloids through the Development of a Bischler–Napieralski/Semipinacol Rearrangement Reaction
    作者:Shuang‐Hu Wang、Rui‐Qi Si、Qing‐Bo Zhuang、Xiang Guo、Tian Ke、Xiao‐Ming Zhang、Fu‐Min Zhang、Yong‐Qiang Tu
    DOI:10.1002/anie.202009238
    日期:2020.12
    A tandem Bischler–Napieralski/semipinacol rearrangement reaction has been developed for the purpose of assembling a bis(spirocyclic) indole framework, a privileged structural unit of aspidofractinine‐type monoterpenoid indole alkaloids, and was used in combination with a subsequent Mannich reaction to expeditiously construct the central bridged bicyclo[2.2.1]heptane ring system of these molecules with
    已经开发了串联的Bischler–Napieralski / semipinacol重排反应,目的是组装双(螺环)吲哚骨架(天冬氨酸吗啡型单萜吲哚生物碱的优先结构单元),并与随后的Mannich反应结合使用,以快速构建这些具有连续四元中心的分子的中心桥联双环[2.2.1]庚烷环系统。这种新策略的发展最终导致了四种aspaspfractinine生物碱的总全合成。
  • APPLICATION OF THE NEW ACYLATING AGENTS [PhS(O)–CH=C(OMe)Cl AND PhSO<sub>2</sub>–CH=C(OMe)Cl] TO THE SYNTHESIS OF INDOLE ALKALOIDS. A TOTAL SYNTHESIS OF (±)-ASPIDOFRACTININE
    作者:Hitoshi Kinoshita、Takeshi Ohnuma、Takeshi Oishi、Yoshio Ban
    DOI:10.1246/cl.1986.927
    日期:1986.6.5
    The new acylating agents [PhS(O)–CH=C(OMe)Cl and the corresponding sulfone] were proved to be useful for indroduction of an acetyl group into the α-position of the carbonyl group by means of two-carbon Michael acceptors, which was successfully applied to a total synthesis of (±)-aspidofractinine.
    事实证明,新的酰化剂[PhS(O)-CH=C(OMe)Cl 和相应的砜]可以通过双碳迈克尔受体将乙酰基诱导到羰基的 α 位,并成功地应用于 (±)-aspidofractinine 的全合成。
  • Total Synthesis of (.+-.)-Aspidofractinine and (.+-.)-Aspidospermidine
    作者:Ernest Wenkert、Song Liu
    DOI:10.1021/jo00104a023
    日期:1994.12
    Functional group manipulations on a previously constructed, easily accessible deethylaspidospermidine derivative have transformed the latter in few steps into a ring E diene, whose Diels-Alder reaction with phenyl vinyl sulfone and subsequent reductions has led to (+/-)-aspidofractinine. One-bond unraveling of a (phenylsulfonyl)aspidofractinine intermediate, followed by reductions, provided a second-generation pathway to (+/-)-aspidospermidine.
  • Cyclization of Oxindolic methylketones with acid : A rapid synthesis of (±)-aspidofractinine
    作者:Dominique Cartier、Mohammed Ouahrani、Jean Lévy
    DOI:10.1016/s0040-4039(00)99622-9
    日期:1989.1
  • Total Syntheses of (−)‐Minovincine and (−)‐Aspidofractinine through a Sequence of Cascade Reactions
    作者:Szilárd Varga、Péter Angyal、Gábor Martin、Orsolya Egyed、Tamás Holczbauer、Tibor Soós
    DOI:10.1002/anie.202004769
    日期:2020.8.3
    8‐step syntheses of ()‐minovincine and ()‐aspidofractinine using easily available and inexpensive reagents and catalyst. A key element of the strategy was the utilization of a sequence of cascade reactions to rapidly construct the penta‐ and hexacyclic frameworks. These cascade transformations included organocatalytic Michael‐aldol condensation, a multistep anionic Michael‐SN2 cascade reaction, and
    我们报告了使用容易获得和廉价的试剂和催化剂进行的(-)-氨基长春新碱和(-)-aspidofractinine的8步合成。该策略的关键要素是利用一系列级联反应快速构建五环和六环框架。这些级联的变换包括有机催化迈克尔-醇醛缩合,一个多阴离子迈克尔-S Ñ 2级联反应,和曼尼希反应中断Fischer吲哚。为了简化合成路线,我们还研究了空间效应的故意使用,以确保各种化学和区域选择性转化。
查看更多

同类化合物

蕊木宁F 蕊木宁 柯蒲木酮碱 夾竹桃鹼 (3aR,5R,5aR,10bR,13aS)-6-甲酰基-2,3,4,5,11,12-六氢-6H,13ah-3a,5a-乙桥-1H-吲哚嗪并[8,1-cd]咔唑-5-羧酸甲酯 (2a,3b,5a,6a,7a,20S)-6,7-环氧-20-羟基-白坚木替宁-3-羧酸甲酯 (2R,5S)-6alpha,7alpha-环氧白坚木替宁-3beta-羧酸甲酯 (2R,5R)-6,7-二去氢白坚木替宁-3beta-羧酸甲酯 16-epi-19-oxokopsinine methyl carbamate (+/-)-16-epi-19-R-mesyloxykopsinine 16-epi-19-oxokopsinine (+/-)-16-epi-19-R-hydroxykopsinine (-)-Norpleiomutine 16,17-Didehydro-5-oxo-18-(phenylsulfonyl)aspidofractinine N(1)-methyl-14,15-didehydroaspidofractinine Aspidofractinine-3-carboxylic acid, methyl ester, (2alpha,3beta,5alpha)- Methyl 1-formyl-17-methoxyaspidofractinine-21-carboxylate methyl (1R,9R,16R,18R,21S)-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7,14-tetraene-18-carboxylate N(a),3β-Dimethoxycarbonyl-aspidofraktinin (+/-)-aspidofractinine aspidofractinin-4(or 20)-one 17-oxoaspidofractinine (+/-)-N-methyl-aspidofractinine Kopsinylalkohol aspidofractinine N1-acetylcopsinine methyl (1S,2R,4S,9R,17R,18R,22R)-3-oxa-6,16-diazaheptacyclo[15.2.2.11,6.02,4.09,17.010,15.09,22]docosa-10,12,14-triene-18-carboxylate methyl (1R,9R,16S,18R,21S)-6-[(15R,17R,19S)-15-(1-hydroxyethyl)-1,11-diazapentacyclo[9.6.2.02,7.08,18.015,19]nonadeca-2,4,6,8(18)-tetraen-17-yl]-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylate 5-oxoaspidofractinine methyl (1S,9R,16R,18R,21S)-2-acetyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate methyl (1S,9R,16S,18R,21S)-2-acetyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate (1S,9S,16R,18S,21S)-2-methoxycarbonyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylic acid (1S,9R,16R,18S,21S)-2-methoxycarbonyl-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylic acid methyl (1R,9R,16S,18S,21R)-2-formyl-4-methoxy-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylate methyl (1S,9R,16R,18S,21S)-11-oxo-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate methyl (1S,9R,16R,18S,21S)-12-methyl-2-aza-12-azoniahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate methyl (1S,9S,16S,18S,21S)-12-methyl-2-aza-12-azoniahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate dimethyl (1S,9R,16R,18S,21S)-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-2,18-dicarboxylate methyl (1S,9R,16R,18R,21S)-12-ethyl-2-aza-12-azoniahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate methyl (1S,9R,16R,18S,21S)-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate methyl (1R,4R,12R,13S,16S)-17-oxo-5,14-diazahexacyclo[12.4.3.01,13.04,12.06,11.012,16]henicosa-6,8,10-triene-4-carboxylate methyl (1R,4R,12R,13S,16R)-17-oxo-5,14-diazahexacyclo[12.4.3.01,13.04,12.06,11.012,16]henicosa-6,8,10-triene-4-carboxylate methyl (1R,9R,12S,16R,18R,21R)-12-methyl-2-aza-12-azoniahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate methyl (1S,9R,16S,18S,21R)-2-formyl-4-methoxy-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylate Kopsan methyl (1S,9S,16S,18R,21R)-2-acetyl-12-methyl-2-aza-12-azoniahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate dimethyl (1S,9R,16S,18S,21S)-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-2,18-dicarboxylate methyl (1S,9S,16S,18S,21R)-2-formyl-4-methoxy-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3(8),4,6-triene-18-carboxylate methyl (1S,9R,16S,18R,21S)-12-methyl-2-aza-12-azoniahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate methyl (1R,9S,16R,18R,21S)-2,12-diazahexacyclo[14.2.2.19,12.01,9.03,8.016,21]henicosa-3,5,7-triene-18-carboxylate