摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

[RuH2(η2-H2)2(tricyclopentylphosphine)2] | 873204-27-4

中文名称
——
中文别名
——
英文名称
[RuH2(η2-H2)2(tricyclopentylphosphine)2]
英文别名
dihydridobis(η2-dihydrogen)bis(tricyclopentylphosphine)ruthenium(II);[RuH22-H2)2(tricyclopentylphosphine)2];Ru(H)22-H2)2(tricyclohexylphosphine)2;Ru(H)22-H2)2(PCyp3)2;[RuH22-H2)2(PCyp3)2];RuH2(H2)2(PCyp3)2
[RuH2(η2-H2)2(tricyclopentylphosphine)2]化学式
CAS
873204-27-4
化学式
C30H60P2Ru
mdl
——
分子量
583.824
InChiKey
FMERSWMSCISQJJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    None
  • 重原子数:
    None
  • 可旋转键数:
    None
  • 环数:
    None
  • sp3杂化的碳原子比例:
    None
  • 拓扑面积:
    None
  • 氢给体数:
    None
  • 氢受体数:
    None

反应信息

  • 作为反应物:
    描述:
    [RuH2(η2-H2)2(tricyclopentylphosphine)2][Cn*RuH(H2)2](PF6)四氢呋喃 为溶剂, 反应 21.0h, 以82%的产率得到[Cn*Ru(μ-H)3Ru(H)2(PCp3)2](PF6)
    参考文献:
    名称:
    合成,结构,以及混合配体的双核钌配合物Polyhydrido的反应性支持1,4,7-三甲基-1,4,7-三氮杂和笨重的膦配体
    摘要:
    以电子和空间位构建双核簇的各向异性的反应位点,混合配体二钌复合物pentahydrido [CN *茹(μ-H)3钌(H)2(PR 3)2 ] +(CN * = 1,4,7-三甲基1,4,7-三氮杂环壬烷; R =成分Cy(图3a),我PR(图3b),环戊基(CYP,3C))通过反应合成[CN *期RuH(H 2)2 ] +(1)与钌(H)2(H 2)2(PR 3)2(R =成分Cy(2A)我PR(图2b),的Cyp( 2C))。治疗3A - Ç与KH,得到相应的中性tetrahydrido络合物的C n *的Ru(μ-H) 3期RuH(PR 3) 2(R =成分Cy(图4a),我PR(图4b),的Cyp( 4C))。的结构3和4是由X射线衍射研究所证实。将Cn *配体引入簇中可增加在Cn *连接的金属中心的电子密度,并显着刺激了向分子氮和二氧化碳的活化。配合3A - Ç用分子氮以产生终端二氮络合物[CN
    DOI:
    10.1021/om500018j
  • 作为产物:
    描述:
    Rudi(bis(cyclopetyl)(η2-C5H7)phosphine)(η2-ethylene) 、 氢气全氘代环己烷 为溶剂, 生成 [RuH2(η2-H2)2(tricyclopentylphosphine)2]
    参考文献:
    名称:
    带有氢化物,二氢和膦配体的钌配合物:可逆的氢释放。
    摘要:
    DOI:
    10.1002/anie.200605038
  • 作为试剂:
    描述:
    三乙氧基硅烷[RuH2(η2-H2)2(tricyclopentylphosphine)2] 作用下, 以 为溶剂, -50.0~30.0 ℃ 、100.0 kPa 条件下, 反应 3.5h, 生成 triethoxysilane-d
    参考文献:
    名称:
    双(二氢)钌配合物或简单金属盐催化的硅烷氘化
    摘要:
    在双氘(D 2)气氛下,用二氢化钌(二氢)配合物和水合金属盐探索了多种硅烷的氘化:烷基硅烷,芳基硅烷,烷氧基硅烷和氯硅烷,硅氧烷和硅氮烷。用于硅烷O(森达的大于97%的氘掺入2 2H)2,等3的SiH,(ETO)3的SiH和Me 2 ClSiH是可能的,0.1%(摩尔)钌络合物的[期RuH 2(η 2 -H 2)2(PCyp 3)2 ] [对于O(SiMe 2 H)2为0.05摩尔%]在纯硅烷中于30°C和1 bar D 2的条件下进行3.5 h催化时。的空气稳定的三氯化钌盐的RuCl 3 ⋅xħ 2 O的也代表O的氘化(森达的有效催化剂2 2H)2和Et 3 SiH基; 为93%和90%的两种硅烷的氘掺入分别是可能的相同的条件下,作为[期RuH 2(η 2 -H 2)2(PCyp 3)2 ]用0.1%催化剂载量。三氯化铑(RhCl )催化O(SiMe 2 H)2的氢-氘交换3 ⋅xħ 2
    DOI:
    10.1002/adsc.201300902
点击查看最新优质反应信息

文献信息

  • Ruthenium-Catalyzed Hydrogenation of Nitriles: Insights into the Mechanism
    作者:Rebeca Reguillo、Mary Grellier、Nicolas Vautravers、Laure Vendier、Sylviane Sabo-Etienne
    DOI:10.1021/ja102759z
    日期:2010.6.16
    Hydrogenation of benzonitrile into benzylamine is catalyzed under very mild conditions by the ruthenium bis(dihydrogen) complex RuH(2)(H(2))(2)(PCyp(3))(2), incorporating two tricyclopentylphosphines. Two key intermediates have been isolated, resulting from the activation of benzonitrile at early stages of activation, i.e., either N-coordination through the nitrile function or first hydrogenation with
    在非常温和的条件下,由双 (二氢) 络合物 RuH(2)(H(2))(2)(PCyp(3))(2) 催化苯甲腈氢化成苄胺,其中包含两种三环戊基膦。两个关键中间体已被分离出来,这是由于在活化的早期阶段苯甲腈的活化,即通过腈功能进行 N-配位或首先氢化形成苄亚胺,然后由于 CH 活化,在上配位作为原属化配体
  • Ruthenium-Catalyzed Reduction of Carbon Dioxide to Formaldehyde
    作者:Sébastien Bontemps、Laure Vendier、Sylviane Sabo-Etienne
    DOI:10.1021/ja500708w
    日期:2014.3.19
    molecule, remains an elementary C1 building block to be observed. Herein we report the direct observation of free formaldehyde from the borane reduction of CO2 catalyzed by a polyhydride ruthenium complex. Guided by mechanistic studies, we disclose the selective trapping of formaldehyde by in situ condensation with a primary amine into the corresponding imine in very mild conditions. Subsequent hydrolysis
    CO2 的功能化是一个具有挑战性的目标,在温和条件下生成 HCOOH、CO、CH3OH 和 CH4 的先例存在。在这个系列中,CH2O 是一种非常活泼的分子,仍然是有待观察的基本 C1 构建块。在此,我们报告了由多氢化配合物催化的 硼烷还原反应中游离甲醛的直接观察。在机理研究的指导下,我们公开了通过在非常温和的条件下与伯胺原位缩合成相应的亚胺来选择性捕获甲醛。随后解成胺和福尔马林溶液,首次证明 可用作生产甲醛的 C1 原料。
  • Synthesis, Neutron Structure, and Reactivity of the Bis(dihydrogen) Complex RuH<sub>2</sub>(η<sup>2</sup>-H<sub>2</sub>)<sub>2</sub>(PCyp<sub>3</sub>)<sub>2</sub> Stabilized by Two Tricyclopentylphosphines
    作者:Mary Grellier、Laure Vendier、Bruno Chaudret、Alberto Albinati、Silvia Rizzato、Sax Mason、Sylviane Sabo-Etienne
    DOI:10.1021/ja055126g
    日期:2005.12.1
    Treatment of Ru(eta4-C8H12)(eta6-C8H10) with 3 bar H2 in the presence of 2 equiv of tricyclopentylphosphine (PCyp3) in pentane resulted in the isolation of the new bis(dihydrogen) complex RuH2(eta2-H2)2(PCyp3)2 (2), characterized by NMR and single-crystal X-ray and neutron diffraction. The single-crystal neutron diffraction study is the first carried out for a bis(dihydrogen) complex. The coordination geometry around the metal center is a distorted octahedron defined by the two phosphines in a trans configuration (making an angle of 168.9(1) degrees ), two cis dihydrogen ligands, and two hydrides trans to them, defining the equatorial plane. The H-H bond distances (0.825(8) and 0.835(8) A) are characteristic of two "unstretched" dihydrogen ligands. H/D exchange between the Ru-H and the C-D bonds of deuterated benzene is observed within 1 h, leading to the formation of various isotopomers RuHxD6-x(PCyp3)2 (with x = 0-6). 2 is a catalyst precursor for ethylene coupling (20 bar, 293 K) to a functionalized arene (Murai reaction). We found a 90% conversion of acetophenone to 2-ethylacetophenone within 35 min, whereas 10 h was needed in the same conditions using the analogous tricyclohexylphosphine complex, RuH2(eta2-H2)2(PCy3)2, the best catalyst precursor, at room temperature, prior to this work.
  • Access to Ruthenium(0) Carbonyl Complexes via Dehydrogenation of a Tricyclopentylphosphine Ligand and Decarbonylation of Alcohols
    作者:Paul D. Bolton、Mary Grellier、Nicolas Vautravers、Laure Vendier、Sylviane Sabo-Etienne
    DOI:10.1021/om8005118
    日期:2008.10.13
    The carbonylruthenium(0) complex Ru(CO)PCyp(2)(eta(2)-C5H7)}(2) (4) has been prepared by reaction of RuH2 PCyp(2)(eta(2)-C5H7)}(2) (3) with an excess of tert-butylethylene in the presence of ethanol. Decarbonylation of ethanol is also observed when reacting the bis(dihydrogen) complex RuH2(eta(2)-H-2)(2)(PCyp(3))(2) (1) with 2 equiv of ethanol. The reaction results formally in the substitution of one dihydrogen ligand by a carbonyl, and the corresponding complex RuH2(eta(2) H-2)(CO)(PCyp(3))(2) (5) was isolated. An excess of tert-butylethylene reacted with 5 to give RuH2(CO) PCyp(2)(eta(2)-C5H7)}(PCyp(3)) (6), which corresponds to the formal loss of 2 equiv of dihydrogen: loss of the dihydrogen ligand and dehydrogenation of one cyclopentyl ring. The dihydride 6 can be dehydrogenated further by reaction with ethylene, affording the ruthenium(0) complex Ru(eta(2)-C2H4)(CO)PCyp(2)(eta(2)-C5H7)}(PCyp(3)) (7). Finally, the dicarbonyl complex RuH2(CO)(2)(PCyp(3))(2) (8) was isolated by exposing I to 3 bar of CO. 8 and the new complexes 4-7, resulting from partial dehydrogenation of one or two cyclopentyl rings of the tricyclopentylphosphines and/or decarbonylation of alcohol, were characterized by multinuclear NMR, IR, elemental analysis, and X-ray diffraction.
  • Probing Highly Selective H/D Exchange Processes with a Ruthenium Complex through Neutron Diffraction and Multinuclear NMR Studies.
    作者:Mary Grellier、Sax A. Mason、Alberto Albinati、Silvia C. Capelli、Silvia Rizzato、Christian Bijani、Yannick Coppel、Sylviane Sabo-Etienne
    DOI:10.1021/ic302307m
    日期:2013.7.1
    Deuterium labeling is a powerful way to gain mechanistic information in biology and chemistry. However, selectivity is hard to control experimentally, and labeled sites can be difficult to assign both in solution and in the solid state. Here we show that very selective high-deuterium contents can be achieved for the polyhydride ruthenium phosphine complex [RuH2(H-2)(PCyp3)(2)] (1) (PCyp3 = (PC5H9)(3)). The selectivity of the HID exchange process is demonstrated by multinuclear NMR and neutron diffraction analyses. It has also been investigated through density functional theory (DFT) calculations. The reactions are performed under mild conditions at room temperature, and the extent of deuterium incorporation, involving selective C-H bond activation within the cyclopentyl rings of the phosphine ligands, can easily be tuned (solvent effects, D-2 pressure). It is shown that D 2 gas can bit the C-H/C-D exchange process.
查看更多