摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

辅酶A二硫醚 | 31664-36-5

中文名称
辅酶A二硫醚
中文别名
——
英文名称
coenzyme A disulfide
英文别名
CoA disulfide;CoASSCoA;CoAS2;CoA-disulfide;[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(3R)-4-[[3-[2-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyldisulfanyl]ethylamino]-3-oxopropyl]amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl] hydrogen phosphate
辅酶A二硫醚化学式
CAS
31664-36-5
化学式
C42H70N14O32P6S2
mdl
——
分子量
1533.07
InChiKey
YAISMNQCMHVVLO-ODFVJXNFSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 密度:
    2.02±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    -11.7
  • 重原子数:
    96
  • 可旋转键数:
    39
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.67
  • 拓扑面积:
    744
  • 氢给体数:
    18
  • 氢受体数:
    42

安全信息

  • WGK Germany:
    3
  • 储存条件:
    -20°C,密封保存,并保持干燥。

SDS

SDS:bb5286210ce04b2e56185abb3ec32671
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    含有迈克尔受体的辅酶 A 类似物作为来自金黄色葡萄球菌的非典型辅酶 A 二硫化物还原酶的抑制剂
    摘要:
    辅酶 A (CoA) 类似物含有 α,β-不饱和酯、酮和砜部分,通过化学酶促合成作为辅酶 A 二硫化物还原酶 (CoADR) 的抑制剂制备,辅酶 A 二硫化物还原酶 (CoADR) 是金黄色葡萄球菌中已证实但尚未开发的药物靶点。在这些含有迈克尔受体的 CoA 类似物中,这些类似物旨在针对 CoADR 的单一必需活性位点半胱氨酸进行偶联物加成,其中一种含有苯基乙烯基砜的类似物显示出最有效的抑制作用,竞争性 K(i) 为~40 nM,并且时间依赖于失活的二阶失活常数约为 40,000 s(-1)·M(-1)。我们的结果表明,亲电子底物类似物应被视为其他医学相关二硫键还原酶的潜在抑制剂。
    DOI:
    10.1021/ja106204m
  • 作为产物:
    描述:
    辅酶 A偶氮二甲酰胺 作用下, 生成 辅酶A二硫醚
    参考文献:
    名称:
    含有迈克尔受体的辅酶 A 类似物作为来自金黄色葡萄球菌的非典型辅酶 A 二硫化物还原酶的抑制剂
    摘要:
    辅酶 A (CoA) 类似物含有 α,β-不饱和酯、酮和砜部分,通过化学酶促合成作为辅酶 A 二硫化物还原酶 (CoADR) 的抑制剂制备,辅酶 A 二硫化物还原酶 (CoADR) 是金黄色葡萄球菌中已证实但尚未开发的药物靶点。在这些含有迈克尔受体的 CoA 类似物中,这些类似物旨在针对 CoADR 的单一必需活性位点半胱氨酸进行偶联物加成,其中一种含有苯基乙烯基砜的类似物显示出最有效的抑制作用,竞争性 K(i) 为~40 nM,并且时间依赖于失活的二阶失活常数约为 40,000 s(-1)·M(-1)。我们的结果表明,亲电子底物类似物应被视为其他医学相关二硫键还原酶的潜在抑制剂。
    DOI:
    10.1021/ja106204m
点击查看最新优质反应信息

文献信息

  • Kinetics and equilibria of thiol/disulfide interchange reactions of selected biological thiols and related molecules with oxidized glutathione
    作者:David A. Keire、Erin Strauss、Wei Guo、Bela Noszal、Dallas L. Rabenstein
    DOI:10.1021/jo00027a023
    日期:1992.1
    Rate constants for reaction of coenzyme A and cysteine with oxidized glutathione (GSSG) and equilibrium constants for the reaction of coenzyme A, cysteine, homocysteine, cysteamine, and related thiols with GSSG by thiol/disulfide interchange were determined over a range of pD values by NMR spectroscopy. The rate constants for reaction of the thiolate anion forms of coenzyme A and cysteine with GSSG suggest that reduction of GSSG by coenzyme A and cysteine is a mechanistically uncomplicated S(N)2 reaction. Equilibrium constants for the thiol/disulfide interchange reactions show a strong dependence on the Bronsted basicity of the thiolate anion. In a similar way, DELTA-E-degrees', the difference between the half-cell potentials for the RSSR/RSH and GSSG/GSH redox couples, is linearly dependent on the difference between the pK(A) values of RSH and glutathione: DELTA-E-degrees' = 64-DELTA-pK(A) -7.7 where DELTA-E-degrees' is in units of mV. The reducing strength at a given pH is also determined by the fraction of the thiol present in the reactive thiolate form. At pD 7, the half-cell potentials for coenzyme A, cysteine, homocysteine, and cysteamine are close to that of glutathione, the major intracellular thiol redox system, which suggests that small changes in the intracellular redox potential can cause significant changes in the intracellular distribution of these biological thiols between their reduced and oxidized forms.
  • Michael Acceptor-Containing Coenzyme A Analogues As Inhibitors of the Atypical Coenzyme A Disulfide Reductase from <i>Staphylococcus aureus</i>
    作者:Renier van der Westhuyzen、Erick Strauss
    DOI:10.1021/ja106204m
    日期:2010.9.22
    β-unsaturated ester, ketone, and sulfone moieties were prepared by chemo-enzymatic synthesis as inhibitors of coenzyme A disulfide reductase (CoADR), a proven and as yet unexploited drug target in Staphylococcus aureus. Among these Michael acceptor-containing CoA analogues, which were designed to target CoADR's single essential active site cysteine for conjugate addition, a phenyl vinyl sulfone-containing analogue
    辅酶 A (CoA) 类似物含有 α,β-不饱和酯、酮和砜部分,通过化学酶促合成作为辅酶 A 二硫化物还原酶 (CoADR) 的抑制剂制备,辅酶 A 二硫化物还原酶 (CoADR) 是金黄色葡萄球菌中已证实但尚未开发的药物靶点。在这些含有迈克尔受体的 CoA 类似物中,这些类似物旨在针对 CoADR 的单一必需活性位点半胱氨酸进行偶联物加成,其中一种含有苯基乙烯基砜的类似物显示出最有效的抑制作用,竞争性 K(i) 为~40 nM,并且时间依赖于失活的二阶失活常数约为 40,000 s(-1)·M(-1)。我们的结果表明,亲电子底物类似物应被视为其他医学相关二硫键还原酶的潜在抑制剂。
查看更多

同类化合物

辅酶A二硫醚 辅酶 alpha-谷胱甘肽混合物二硫化物 (2S)-2-amino-5-[[(2S)-3-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyldisulfanyl]-1-(carboxymethylamino)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid [S,S']bi[coenzyme-A] CoA-glutathione; (Acyl-CoA); [M+H]+ [(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-YL)-4-hydroxy-3-(phosphonooxy)tetrahydrofuran-2-YL]methyl (3R)-3-hydroxy-4-{[3-({2-[(2-hydroxyethyl)dithio]ethyl}amino)-3-oxopropyl]amino}-2,2-dimethyl-4-oxobutyl dihydrogen diphosphate 2-amino-5-[[3-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyldisulfanyl]-1-(carboxymethylamino)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid [5-(6-Aminopurin-9-yl)-2-[[[[4-[[3-[2-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-[hydroxy(oxido)phosphoryl]oxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyldisulfanyl]ethylamino]-3-oxopropyl]amino]-3-hydroxy-2,2-dimethyl-4-oxobutoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]-4-hydroxyoxolan-3-yl] hydrogen phosphate [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [3-hydroxy-2,2-dimethyl-4-[[3-[2-(methyldisulfanyl)ethylamino]-3-oxopropyl]amino]-4-oxobutyl] hydrogen phosphate 5-[[3-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonatooxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyldisulfanyl]-1-(carboxylatomethylamino)-1-oxopropan-2-yl]amino]-2-azaniumyl-5-oxopentanoate [[(2R,4S,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(3S)-3-hydroxy-2,2-dimethyl-4-[[3-[2-(methyldisulfanyl)ethylamino]-3-oxopropyl]amino]-4-oxobutyl] hydrogen phosphate [[(2R,4S,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(3S)-4-[[3-[2-(ethyldisulfanyl)ethylamino]-3-oxopropyl]amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl] hydrogen phosphate [[(2R,4S,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(3S)-4-[[3-[2-(butan-2-yldisulfanyl)ethylamino]-3-oxopropyl]amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl] hydrogen phosphate [[5-(6-Aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [4-[[3-[2-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyldisulfanyl]ethylamino]-3-oxopropyl]amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl] hydrogen phosphate 2-Amino-5-[[3-[2-[3-[[4-[[[5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyldisulfanyl]-1-(carboxymethylamino)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid