The Ce-Ni-Si system as a representative of the rare earth-Ni-Si family: Isothermal section and new rare-earth nickel silicides
作者:A.V. Morozkin、A.V. Knotko、A.V. Garshev、V.O. Yapaskurt、R. Nirmala、S. Quezado、S.K. Malik
DOI:10.1016/j.jssc.2016.09.001
日期:2016.11
The Ce-Ni-Si system has been investigated at 870/1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: Ce2Ni15.8Si1.2 (Th2Ni17-type), Ce2Ni15-14Si2-3 (Th2Zn17-type), CeNi(8.6)Si(2.)4 (BaCd11-type), CeNi8.8Si4.2 (LaCo9Si4-type), CeNi6Si6 (CeNi6Si6-type), CeNi5Si1-0.3 (TbCu7-type), CeNi4Si (YNi4Si-type), CeNi2Si2 (CeGa2Al2-type), Ce2Ni3Si5 (U2Co3Si5-type), Ce3Ni6Si2 (Ce3Ni6Si2-type), Ce3Ni4Si4 (U3Ni4Si4-type), CeNiSi2 (CeNiSi2-type), similar to CeNi1.3Si0.7 (unknown type structure), Ce6Ni7Si4 (Pr6Ni7Si4-type), CeNiSi (LaPtSi-type), CeNi0.8-0.3Si1.2-1.7 (AlB2-type), similar to Ce2Ni2Si (unknown type structure), similar to Ce4.5Ni3.5Si2 (unknown type structure), Ce15Ni7Si10 (Pr15Ni7Si10-type), Ce5Ni1.85Si3 (Ce5Ni1.85Si3-type), Ce6Ni1.4Si3.4 (Ce6Ni1.67Si3-type), Ce7Ni2Si5 (Ce7Ni2Si5-type) and Ce3NiSi3 (Y3NiSi3-type) has been confirmed in this section.Moreover, the type structure has been determined for similar to Ce2Ni2Si (Mo2NiB2-type Ce2Ni2.5Si0.5) and similar to Ce4.5Ni3.5Si2 (W3CoB3-type Ce3Ni3-2.7Si1-1.3) and new ternary phases Ce2Ni6.25Si0.75 (Gd2Co7-type), CeNi7-7.6Si6.54 (GdNi7Si6-type) and similar to Ce27Ni42Si31 (unknown type structure) have been identified in this system.Quasi-binary phases, solid solutions, were detected at 870/1070 K for CeNi5, CeNi3 and CeSi2; while no appreciable solubility was observed for the other binary compounds of the Ce-Ni-Si system.As a prolongation of Rare Earth-Ni-Si system's isostructural rows, LaNi7Si6 and YNi6.6Si6.1 (GdNi7Si6-type), ScNi6Si6 (YCo6Ge6-type), NdNi6Si6 (YNi6Si6-type), Tb, Ho}(2)Ni15Si2 (Th2Zn17-type), Nd2Ni2.3Si0.7 and Sm2Ni2.2Si0.8 (Mo2NiB2-type), Nd3Ni2.55Si1.45 (W3CoB3-type) and Tb, Dy}(7)Ni50Si19 (Y7Ni49Si20-type) compounds were synthesized and investigated.Magnetic properties of the CeNi6Si6, CeNi7Si6, CeNi3.5Si4.2, Ce6Ni7Si4, CeNi5Si, Ce2Ni2.5Si0.5, Nd2Ni2.3Si0.7 and Dy7Ni50Si19 compounds have also been investigated and are presented here. (C) 2016 Elsevier Inc. All rights reserved.