摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

tin bismuth

中文名称
——
中文别名
——
英文名称
tin bismuth
英文别名
——
tin bismuth化学式
CAS
——
化学式
BiSn
mdl
——
分子量
327.69
InChiKey
WPBPERBBTNQYSU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.1
  • 重原子数:
    2.0
  • 可旋转键数:
    0.0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0.0
  • 氢给体数:
    0.0
  • 氢受体数:
    0.0

反应信息

  • 作为产物:
    描述:
    tin氢化铋 以 melt 为溶剂, 生成 tin bismuth
    参考文献:
    名称:
    基于掺杂剂选择性迁移到液态金属界面的二维材料掺杂工艺
    摘要:
    在半导体的掺杂过程中引入微量杂质仍然是电子行业的技术挑战。通过利用液态金属界面的选择性富集和收集掺杂的金属氧化物半导体层,可以降低工艺的复杂性,并可以实现对结果的高度控制。在这里,提出了一种用于制备掺杂二维半导体片的自然过滤机制,该机制基于体中金属元素的不同迁移趋势,以竞争富集界面。作为一个模型,采用散装中不同重量比的 Sn 和 Bi 的液态金属合金来收集 Bi 2 O 3掺杂的 SnO 纳米片。在该模型中,即使在本体中 Bi 浓度非常高的情况下,Sn 也比 Bi 更倾向于占据 Bi-Sn 合金的表面位点。这为创建具有严格控制的 Bi 2 O 3掺杂剂的SnO 2D 薄片提供了机会。例如,展示了如何使这种纳米片对还原和氧化环境气体具有选择性。这里展示的过程为​​电子行业未来的合成和制造过程提供了重要的机会。
    DOI:
    10.1002/adma.202104793
点击查看最新优质反应信息

文献信息

  • Novel Bi‐Doped Amorphous SnO <i> <sub>x</sub> </i> Nanoshells for Efficient Electrochemical CO <sub>2</sub> Reduction into Formate at Low Overpotentials
    作者:Qi Yang、Qilong Wu、Yang Liu、Shuiping Luo、Xiaotong Wu、Xixia Zhao、Haiyuan Zou、Baihua Long、Wen Chen、Yujia Liao、Lanxi Li、Pei Kang Shen、Lele Duan、Zewei Quan
    DOI:10.1002/adma.202002822
    日期:——
    properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi‐doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi‐SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming
    工程学上新颖的基于的双属材料可以提供引人入胜的催化性能,以促进电化学CO 2的还原。在本文中,第一合成均匀的Sn 1- X的Bi X合纳米颗粒(X与天然Bi-掺杂至多0.20)无定形的SnO X壳用于有效CO 2减少的报道。Bi-SnO x纳米壳可在宽的电势范围内(相对RHE为-0.67至-0.92 V)对法拉第效率高(> 90%)的甲酸盐进行生产,且电势低,优于目前的氧化催化剂。源自Sn 0.80 Bi的最新Bi-SnO x纳米壳0.20合纳米粒子具有74.6 mA cm -2的大分电流密度和95.8%的高法拉第效率。详细的电催化分析和相应的密度泛函理论计算同时表明,将Bi原子掺入Sn物种可通过抑制H 2和CO的形成促进甲酸的产生。
  • Atomization energies and enthalpies of formation of the SnBin (n=1–3) gaseous molecules by Knudsen cell mass spectrometry
    作者:G. Meloni、K. A. Gingerich
    DOI:10.1063/1.1461813
    日期:2002.4.22
    The equilibria involving the gaseous species SnBi, SnBi2, and SnBi3 above the condensed system Bi–Sn contained in a graphite cell have been investigated by the Knudsen effusion technique combined with mass spectrometry. Third law enthalpies for the reactions SnBin(g)=Sn(cond)+nBi(g), n=1–3, were evaluated. By combining the experimental reaction enthalpies with the appropriate thermodynamic data taken
    已经通过 Knudsen 渗出技术结合质谱法研究了石墨电池中包含的凝聚系统 Bi-Sn 上方的气态物质 SnBi、SnBi2 和 SnBi3 的平衡。评估了反应 SnBin(g)=Sn(cond)+nBi(g), n=1-3 的第三定律焓。通过将实验反应焓与取自文献的适当热力学数据相结合,得出以下原子化能 ΔaH0o 和形成焓 ΔfH298.15o,单位为 kJ mol-1:SnBi,191.1±12.0 和 317.5±12.0 ; SnBi2, 415.2±15.0 和 303.0±15.0; SnBi3、603.4±18.0 和 323.0±18.0。
  • BCC high-pressure phase in the SnBi alloy
    作者:V.F. Degtyareva、I. Bdikin、S. Khasanov
    DOI:10.1016/0038-1098(96)00329-8
    日期:1996.9
    Abstract The equiatomic SnBi alloy was studied by X-ray angular-dispersive diffraction using a diamond anvil cell up to a pressure of 15 GPa. The first transformation at 1.5 GPa from the eutectic phase mixture (Sn + Bi) to a single phase state (X-phase) confirms earlier work. This is followed upon an increase in pressure to 10.5 GPa by a new transformation to a body centered cubic, bcc, structure. All transformations
    摘要 使用刚石砧室通过 X 射线角色散衍射研究了等原子 SnBi 合,压力高达 15 GPa。从共晶相混合物 (Sn + Bi) 到单相状态 (X 相) 在 1.5 GPa 下的第一次转变证实了早期的工作。在压力增加到 10.5 GPa 之后,又发生了向体心立方体心立方结构的新转变。所有的转变在压力降低时都是可逆的。SnBi 合在高压下的结构特性与已知的组成元素的高压形式相关,并提出了扩展 bcc 固溶体的可能性。
  • Impact of permanent magnet stirring on dendrite growth and elastic properties of Sn–Bi alloys revealed by pulse echo overlap method
    作者:A.A. El-Daly、A.A. Ibrahiem、A.E. Hammad
    DOI:10.1016/j.jallcom.2018.07.122
    日期:2018.10
    Studying and understanding the dendritic growth process is a challenging topic related to liquid-solid phase transition, as it helps to predict the final microstructure controlling the solder properties. In a specific case of the design of Sn-Bi and Sn-Bi-Cu alloys, the solidification microstructures and corresponding electrical and elastic properties were studied with and without permanent magnetic stirring (PMS), as their influence on the growth morphology of dendrites is not yet fully assessed to date. We use pulse echo overlap (PEO) method for measuring the polycrystalline bulk modulus K, Young's modulus E, shear modulus G, Poisson ratio v and hardness H. The PMS-driven flow caused a disruption of the columnar beta-Sn dendrites and columnar-to-equiaxed transition (CET). Such behavior is believed to evolve from dendrite fragmentation, arises through complex hyper-branched morphologies at the origin of Lorentz force and Seebeck effect that acting on the melt. Both the hardness and elastic modulus are increased as the Poisson's ratio decreased. Moreover, the Pugh ratio clarified the ductility behavior of the alloy samples, while Poisson's ratio and electrical resistivity display slight decrease in the ionic contribution with applying PMS and/or Cu content. These results open new ways to predict the final microstructure controlling the dendritic growth in metallic alloys. (C) 2018 Elsevier B.V. All rights reserved.
  • Solidification of immiscible Al75Bi9Sn16 alloy with different cooling rates
    作者:Chen Wu、Mingyang Li、Peng Jia、Rongxue Liu、Shujing Cui、Haoran Geng
    DOI:10.1016/j.jallcom.2016.06.275
    日期:2016.12
    In this paper, the impact of cooling rate on solidification microstructures of Al75Bi9Sn16 alloy was studied for obtaining AleBieSn core-shell organizations by SEM under normal casting conditions. The results show that the core-shell structure is composed of SneBi-rich core and Al-rich shell and outermost thin layer of SneBi phase when Al75Bi9Sn16 alloy melt is cast in a copper mold; when Al75Bi9Sn16 alloy melt is cast in sand mold, alloy does not form the typical core-shell structure. (C) 2016 Elsevier B.V. All rights reserved.
查看更多