摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4,4'-dichloro-β-truxinic acid | 109525-83-9

中文名称
——
中文别名
——
英文名称
4,4'-dichloro-β-truxinic acid
英文别名
p,p'-dichloro-β-truxinic acid;4,4'-Dichlor-β-truxinsaeure;(1R,2S,3R,4S)-3,4-bis(4-chlorophenyl)cyclobutane-1,2-dicarboxylic acid
4,4'-dichloro-β-truxinic acid化学式
CAS
109525-83-9
化学式
C18H14Cl2O4
mdl
——
分子量
365.213
InChiKey
BWHIMFBRAQBLKQ-SYMSYNOKSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    159-160 °C(Solvent: Acetic acid)
  • 沸点:
    564.4±50.0 °C(Predicted)
  • 密度:
    1.474±0.06 g/cm3(Temp: 20 °C; Press: 760 Torr)(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.8
  • 重原子数:
    24
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.22
  • 拓扑面积:
    74.6
  • 氢给体数:
    2
  • 氢受体数:
    4

反应信息

  • 作为产物:
    描述:
    对氯肉桂酸 在 COOH-functionalized carbon spheres 作用下, 以 neat (no solvent, solid phase) 为溶剂, 生成 4,4'-dichloro-β-truxinic acid
    参考文献:
    名称:
    模板立体控制的[2 + 2]光反应,通过对亲水官能化碳材料的表面识别进行指导† ‡
    摘要:
    由基于亲水性碳材料(HCM)的多价H键外显子模板表面定向的[2 + 2]光反应区域选择性合成单二聚体的超分子辅助首次得到强调。在溶液中连续两个步骤(紫外线照射和水热异构化)后,由功能化的碳纳米管或亚微球辅助的对苯二甲酸酯的超分子光化学提供了一个单一的rtct-异构体。碳球显示出以中等至定量产率介导4-肉桂酸衍生物二聚化的能力。该结果可以通过溶液或通过碳球/肉桂衍生物组件的机械化学研磨辅助。由于表面上存在–COOH和–OH基团以及有效的碳模板:底物比率,因此将此类纳米材料的结构模板特征作为表面识别过程的函数进行了讨论。
    DOI:
    10.1039/c7ce01090g
点击查看最新优质反应信息

文献信息

  • Remarkably high homoselectivity in [2 + 2] photodimerization of trans-cinnamic acids in multicomponent systems
    作者:Thanh Binh Nguyen、Ali Al-Mourabit
    DOI:10.1039/c6pp00201c
    日期:2016.9
    [2 + 2] homoadducts were exclusively obtained with total regio- and stereo-selectivities when a suspension of several solid photoactive trans-cinnamic acids in cyclohexane was stirred and irradiated.
    当搅拌并照射几种固体光敏反式肉桂酸环己烷中的悬浮液时,[2 + 2]同加合物仅具有总的区域选择性和立体选择性。
  • Antinociceptive Activities of .ALPHA.-Truxillic Acid and .BETA.-Truxinic Acid Derivatives
    作者:Yu-Ming Chi、Motoyuki Nakamura、Xi-Ying Zhao、Toyokichi Yoshizawa、Wen-Mei Yan、Fumio Hashimoto、Junei Kinjo、Toshihiro Nohara、Shinobu Sakurada
    DOI:10.1248/bpb.29.580
    日期:——
    Our recent study demonstrated that the dimeric structure of α-truxillic acid derivatives played an important role in the expression of their anti-inflammatory activities. In the present report, to investigate the correlation between the structure and anti-inflammatory activity, α-truxillic acid (1) and its derivatives (2—6), β-truxinic acid (7) and its derivatives (8—10) were prepared, and their activities were evaluated in the formalin test. All compounds showed only weak or no activities against the neurogenic pain response, but demonstrated significant activities against the inflammatory pain response induced by formalin. The highest anti-inflammatory activities were observed for α-truxillic acid (1) and its derivative 4,4′-dihydroxy-α-truxillic acid (2). In addition, α-truxillic acid (1) and its derivative, α-truxillic acid bis(p-nitrophenyl)ester (5), showed higher anti-inflammatory activities than β-truxinic acid (7) and the corresponding derivative (10). Furthermore, free carboxylic acids (1, 2) showed higher activities than their dimethyl esters (3, 4) and bis(p-nitrophenyl)ester (5). These results confirmed that the α-formation of dimeric structure and the free carboxylic acid were also important for the expression of anti-inflammatory activities. Otherwise, 4,4′-dichloro-β-truxinic acid (8) had higher activity than its parent compound 7; furthermore, 1,3-dibenzoyl-2,4-di(4-chlorophenyl)cyclobutane (6) also showed strong anti-inflammatory activity. These results suggested that substituents in the phenyl groups were also important for the expression of anti-inflammatory activity. In order to gain information about their activity intensity, the anti-inflammatory activities of 2 and 4,4′-dichlorolated derivatives (6, 8) were compared with that of indomethacin (a nonsteroidal anti-inflammatory drug) in the formalin test. As a result, compounds 2, 6 and 8 showed stronger anti-inflammatory activities than indomethacin. These results suggested that α-truxillic acid and β-truxinic acid derivatives might be developed into a new type of anti-inflammatory drug.
    我们最近的研究表明,α-曲昔酸衍生物的二聚体结构对其抗炎活性的表达起着重要作用。为了研究结构与抗炎活性之间的相关性,本报告制备了α-曲昔酸(1)及其衍生物(2-6)、β-曲昔酸(7)及其衍生物(8-10),并在福尔马林试验中评估了它们的活性。所有化合物对神经源性疼痛反应的活性都很弱或没有,但对福尔马林诱导的炎症性疼痛反应有显著的活性。抗炎活性最高的是α-曲昔酸(1)及其衍生物 4,4′-二羟基-α-曲昔酸(2)。此外,α-曲昔酸(1)及其衍生物α-曲昔酸双(对硝基苯基)(5)的抗炎活性高于β-曲昔酸(7)及其相应衍生物(10)。此外,游离羧酸(1、2)的活性高于其二甲(3、4)和双(对硝基苯基)(5)。这些结果证实,二聚体结构的 α 形成和游离羧酸对抗炎活性的表达也很重要。此外,4,4′-二-β-曲辛酸(8)比其母体化合物 7 具有更高的活性;1,3-二甲酰基-2,4-二(4-氯苯基)环丁烷(6)也表现出很强的抗炎活性。这些结果表明,基中的取代基对于抗炎活性的表达也很重要。为了了解它们的活性强度,在福尔马林试验中将 2 和 4,4′-二生物(6、8)的抗炎活性与吲哚美辛(一种非甾体抗炎药)的抗炎活性进行了比较。结果表明,化合物 2、6 和 8 比吲哚美辛具有更强的抗炎活性。这些结果表明,α-曲昔酸和β-曲昔酸衍生物可能被开发成一种新型消炎药。
  • Structural transformations in crystals induced by radiation and pressure. Part 9. The photochemical behaviour of cinnamic acids of stack architecture – Comparative analysis
    作者:Tomasz Galica、Krzysztof A. Konieczny、Ilona Turowska-Tyrk
    DOI:10.1016/j.jphotochem.2019.112119
    日期:2020.1
    structure of the new polymorph II of 4-chlorocinnamic acid was presented and compared with the structure of polymorph I. Molecules in both polymorphs formed stacks, but the mutual arrangement of the stacks was different in both cases. The values of the intermolecular geometrical parameters indicated that both polymorphs should undergo the [2 + 2] photodimerization. The results of the studies of this photochemical
    提出了新的4-肉桂酸多晶型物II的结构,并将其与多晶型物I的结构进行了比较。两种多晶型物中的分子均形成了堆叠,但两种情况下堆叠的相互排列方式均不同。分子间几何参数的值表明两个多晶型物应进行[2 + 2]光二聚化。分析了该光化学反应对多晶型物Ⅱ的研究结果。在反应之前将晶体结构确定为0.1 MPa,0.2 GPa,0.5 GPa和2.0 GPa,对于部分反应的晶体直至0.1 MPa确定为0.1 MPa和0.5 GPa 。反应进度为20%。这样就可以监视光致结构的变化以及高压对其的影响。高压能够显着地阻止单位细胞体积的增加以及由反应引起的分子间相互作用的变化。将观察到的单位细胞体积的变化与具有堆叠排列和分子以中心对称对排列的4-肉桂酰胺的2,6-和2,5-二氟肉桂酸的数据进行比较。根据单位单元中的自由空间量来解释差异。在光化学反应中,两个相邻单体之间的距离是恒定的,对于其他堆叠排列的肉桂酸
  • Access to Symmetrical and Unsymmetrical Cyclobutanes via Template-Directed [2+2]-Photodimerization Reactions of Cinnamic Acids
    作者:Yunus Emre Türkmen、Bilge Banu Yagci、Badar Munir、Yunus Zorlu
    DOI:10.1055/a-2126-3774
    日期:2023.11
    applicable template-directed photochemical [2+2]-cycloaddition reaction which provides access to a wide range of symmetrical and unsymmetrical cyclobutane products. The use of 1,8-dihydroxynaphthalene as a covalent template paved the way for successful and highly selective photochemical homodimerization and heterodimerization reactions in the solid state between cinnamic acid derivatives. Notably,
    在这项工作中,我们开发了一种通用且广泛适用的模板导向光化学[2+2]-环加成反应,该反应提供了多种对称和不对称环丁烷产物的获得。使用1,8-二羟基萘作为共价模板,为肉桂酸生物之间成功且高选择性的固态光化学同二聚和异二聚反应铺平了道路。值得注意的是,该方法同样适用于含芳基和杂芳基的底物,导致以单一非对映异构体形式形成 β-truxinic 酸类似物,并且产率很高(高达 99%)。
  • Compelled Orientational Control of the Solid-State Photodimerization of trans -Cinnamamides: Dicarboxylic Acid as a Non-covalent Linker
    作者:Yoshikatsu Ito、Hiroyuki Hosomi、Shigeru Ohba
    DOI:10.1016/s0040-4020(00)00505-6
    日期:2000.9
    The 2:1 hydrogen-bonded cocrystals 1a.ox, 1a.su, 1a.pht, 1a.fu, 1b.ox, 1c.ox, 1d.ox between trans-cinnamamides (la-ld) and dicarboxylic acids (ox, su, gl, fu, pht) were prepared and characterized by IR and powder X-ray techniques. The crystal structures of la pht, la ox and la fu were solved by single crystal X-ray diffraction. Phthalic acid (pht) caused beta-type photodimerization of trans-cinnamamide (la) in the cocrystal and functioned as a non-covalent licker like gauche 1,2-diamines in photodimerization of trans-cinnamic acids. Oxalic acid (ox) enforced la to take a bilayer structure that is suitable for beta-type photodimerization. In the case of fumaric acid (fu), cross photodimerization with la occurred to give a cycloadduct 4. For the cocrystals la pht and la fu, pedal-like motion was assumed to occur prior to the dimerization. (C) 2000 Elsevier Science Ltd. All rights reserved.
查看更多

同类化合物

二[(1R,2R,5S)-2-甲氧羰基-8-甲基-8-氮杂双环[3.2.1]辛烷-3-基](1S,2S,3R,4S)-3,4-二(苯基)环丁烷-1,2-二羧酸酯 二[(1R,2R,5S)-2-甲氧羰基-8-甲基-8-氮杂双环[3.2.1]辛烷-3-基](1S,2R,3S,4R)-3,4-二(苯基)环丁烷-1,2-二羧酸酯 r-1,t-2-二甲基-t-3,c-3,4-二苯基环丁烷 r-1,t-2,c-3-三苯基-c-4-氰基环丁烷 3,4-双(4-羟基苯基)环丁烷-1,2-二羧酸 3,4-二苯基环丁烷-1,2-二羧酸 1-甲氧基-4-(2,2,3,3-四甲基环丙基)苯 1-[2,3-二甲基-4-(2,4,5-三甲氧基苯基)环丁基]-2,4,5-三甲氧基苯 (2,3,4-三苯基环丁基)苯 (1R,2S,3S,4R)-3,4-二(苯基)环丁烷-1,2-二甲酸二[(1R,2R,5S)-2-甲氧羰基-8-甲基-8-氮杂双环[3.2.1]辛烷-3-基]酯 4,9-bis(2-methoxyphenyl)-3a,4,9,9a-tetrahydro-1H-4,9-epoxybenzo[f]isoindole-1,3(2H)-dione (2S,3R)-1-(Hydroxy-phenyl-methyl)-2,3-diphenyl-4-[1-phenyl-meth-(E)-ylidene]-cyclobutanol 2,3,5,6-Tetraphenyl-1,4-cyclohexandion (1S,2S,3S,4S)-3,4-Bis-[2-(di-p-tolyl-phosphinoyl)-phenyl]-cyclobutane-1,2-dicarboxylic acid diethyl ester endo-1,2-dicarbomethoxy-5,5-dimethyl-exo-3,4-diphenylbicyclo<2.1.0>pentane 2-Methylen-3,4-dihydroxy-trans-5,6-diphenylbicyclo<3.1.0>hexan 1,1,4,4-Tetramethyl-2,3b,5,6b-tetraphenyl-1,3a,3b,4,6a,6b-hexahydro-1,4-digerma-cyclobutadicyclopentene 6-Ethyl-2,6-diphenyl-bicyclo[3.1.0]hexane (1S,2S,4R,5R)-1,2,4,5-Tetraphenyl-tricyclo[3.1.0.02,4]hexane (4R,5S)-4-(3,4-dimethoxyphenyl)-5-nitro-5-(4-nitrobenzyl)tetrahydro-2H-pyran-2-one (1R,2R,3S,4S)-ethyl 1-acetyl-4-hydroxy-3-nitro-2,4-diphenylcyclopentanecarboxylate 3,4-bis-(4-hydroxy-3-methoxy-phenyl)-cyclobutane-1,2-dicarboxylic acid 1r,2c-diacetyl-3t,4t-diphenyl-cyclobutane 3,7-Diphenyl-tetracyclo<3.3.0.02,8.03,7>octan 3,3-Dimethyl-1-phenyl-tricyclo[4.1.0.02,7]heptane (3S,4R)-ethyl 1,2,3,4-tetrahydro-1-methyl-2-oxo-4-p-tolylpyridine-3-carboxylate (2R,3R)-2,3-diphenylcyclopropane-1,1-dimethanol methyl 1-formyloxy-9,9-bis(4-methoxyphenyl)pentacyclo<4.3.0.02,5.03,8.04,7>nonane-4-carboxylate (3-Cyanomethyl-2,4-diphenyl-cyclobutyl)-acetonitrile γ-Truxinsaeure (1R,6S)-1,7-Diphenyl-bicyclo[4.1.0]heptane 4,4',4'',4'''-(cyclobutane-1,2,3,4-tetrayl)tetrabenzoic acid 2,5,6-trimethyl-3,4-diphenyl-cyclohex-3-enecarboxylic acid 5,6,14,15,20,21-Hexaphenylheptacyclo<8.8.4.13,17.18,12.04,7.013,16.019,22>tetracosa-1,3(23),8,10,12(24),17-hexaen (3S,4R)-3,4-diphenyltetracyclo[11.5.0.02,5.06,12]octadeca-1,5,7,10,12,14,17-heptaene (Z)-1,2-bis(trans-2,trans-3-diphenylcyclopropyl)ethene Ethyl 4-(7-phenyl-7-bicyclo[2.2.1]heptanyl)benzoate 5-Methyl-5,6-diphenylcyclohexa-1,3-diene 4,4',4'',4'''-cyclobutane-1,2,3,4-tetrayl-tetrakis-benzamidine (1R,2R,3S,4S)-3,4-Diphenyl-cyclobutane-1,2-dicarboxylic acid bis-dimethylamide 3,4,12,13-Tetraphenylpentacyclo<13.3.1.16,10.02,5.011,14>eicosa-1(19),6,8,10(20),15,17-hexaen 1'-[(tert-butoxy)carbonyl]-4,10-dimethyl-14,33-dinitrospiro(2,12-dioxa-18,22,25,29-tetraazahexacyclo-[29.2.2.23,6.28,11.213,16.222,25]tritetraconta-3,5,8,10,13,15,31,33,34,38,40,42-dodecaene-7,4'-piperidine)-17,30-dione 4,4'-Dibrom-β-truxinsaeure-dimethylester 1ξ-bromo-2r,3c-bis-bromomethyl-1ξ,4t-diphenyl-cyclobutane (Z)-1,2-bis(trans-2,trans-3-diphenylcyclopropyl)ethene Methyl-[3,4,4-triphenyl-thietan-(2Z)-ylidene]-amine