摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

lambda~2~-Stannane--silver (3/1) | 501915-05-5

中文名称
——
中文别名
——
英文名称
lambda~2~-Stannane--silver (3/1)
英文别名
λ2-stannane;silver
lambda~2~-Stannane--silver (3/1)化学式
CAS
501915-05-5
化学式
AgSn3
mdl
——
分子量
523.353
InChiKey
JDPQSZVDFUAJKA-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

反应信息

  • 作为反应物:
    描述:
    lambda~2~-Stannane--silver (3/1) 以 neat (no solvent) 为溶剂, 生成 tinlambda~2~-Stannane--silver (1/3)
    参考文献:
    名称:
    Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry
    摘要:
    Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate. (C) 2013 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.jallcom.2013.06.110
  • 作为产物:
    描述:
    tin 以 neat (no solvent) 为溶剂, 生成 lambda~2~-Stannane--silver (3/1)
    参考文献:
    名称:
    Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry
    摘要:
    Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate. (C) 2013 Elsevier B.V. All rights reserved.
    DOI:
    10.1016/j.jallcom.2013.06.110
点击查看最新优质反应信息