Treatment of viral infections by modulation of host cell metabolic pathways
申请人:Munger Josh
公开号:US20090239830A1
公开(公告)日:2009-09-24
Alterations of certain metabolite concentrations and fluxes that occur in response to viral infection are described. Host cell enzymes in the involved metabolic pathways are selected as targets for intervention; i.e., to restore metabolic flux to disadvantage viral replication, or to further derange metabolic flux resulting in “suicide” of viral-infected cells (but not uninfected cells) in order to limit viral propagation. While any of the enzymes in the relevant metabolic pathway can be selected, pivotal enzymes at key control points in these metabolic pathways are preferred as candidate antiviral drug targets. Inhibitors of these enzymes are used to reverse, or redirect, the effects of the viral infection. Drug candidates are tested for antiviral activity using screening assays in vitro and host cells, as well as in animal models. Animal models are then used to test efficacy of candidate compounds in preventing and treating viral infections. The antiviral activity of enzyme inhibitors is demonstrated.
TREATMENT OF VIRAL INFECTIONS BY MODULATION OF HOST CELL METABOLIC PATHWAYS
申请人:MUNGER Josh
公开号:US20130065850A1
公开(公告)日:2013-03-14
Alterations of certain metabolite concentrations and fluxes that occur in response to viral infection are described. Host cell enzymes in the involved metabolic pathways are selected as targets for intervention; i.e., to restore metabolic flux to disadvantage viral replication, or to further derange metabolic flux resulting in “suicide” of viral-infected cells (but not uninfected cells) in order to limit viral propagation. While any of the enzymes in the relevant metabolic pathway can be selected, pivotal enzymes at key control points in these metabolic pathways are preferred as candidate antiviral drug targets. Inhibitors of these enzymes are used to reverse, or redirect, the effects of the viral infection. Drug candidates are tested for antiviral activity using screening assays in vitro and host cells, as well as in animal models. Animal models are then used to test efficacy of candidate compounds in preventing and treating viral infections. The antiviral activity of enzyme inhibitors is demonstrated.
Disclosed herein are novel cytotoxic peptides of formula (I) as described herein:
and the use of such peptides in making immunoconjugates (i.e Antibody Drug Conjugates) Also described herein are immunoconjugates (i.e Antibody Drug Conjugates) comprising such novel cytotoxic peptide linked to an antigen binding moiety, such as an antibody; where such immunoconjugates are useful for treating cell proliferative disorders. The invention further provides pharmaceutical compositions comprising these immunoconjugates, compositions comprising the immunoconjugates with a therapeutic co-agent, and methods to use these immunoconjugates and compositions for treating cell proliferation disorders.
AMATOXIN DERIVATIVES AND CONJUGATES THEREOF AS INHIBITORS OF RNA POLYMERASE
申请人:Grunewald Jan
公开号:US20170355731A1
公开(公告)日:2017-12-14
The invention disclosed herein relates to cytotoxic cyclic peptides of Formula (I), methods of inhibiting RNA polymerase with such cyclic peptides, immunoconjugates comprising such cyclic peptides (i.e Antibody Drug Conjugates), pharmaceutical compositions comprising such cyclic peptides immunoconjugates, compositions comprising such cyclic peptides immunoconjugates with a therapeutic co-agent and methods of treatment using such cyclic peptides immunoconjugates:
Provided herein are immunoconjugates comprising an anti-DC-SIGN antibody conjugated to a STING agonist. Also disclosed are methods of making the immunoconjugates and methods of treating cancer using the immunoconjugates.