摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

7-amino-5-(2,4-dimethoxyphenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-pyrimidine-6-carbonitrile

中文名称
——
中文别名
——
英文名称
7-amino-5-(2,4-dimethoxyphenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-pyrimidine-6-carbonitrile
英文别名
7-amino-5-(2,4-dimethoxyphenyl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carbonitrile;7-amino-5-(2,4-dimethoxyphenyl)-2,4-dioxo-1,5-dihydropyrano[2,3-d]pyrimidine-6-carbonitrile
7-amino-5-(2,4-dimethoxyphenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-pyrimidine-6-carbonitrile化学式
CAS
——
化学式
C16H14N4O5
mdl
——
分子量
342.311
InChiKey
ZURZNDNDFXLTKY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.6
  • 重原子数:
    25
  • 可旋转键数:
    3
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.19
  • 拓扑面积:
    136
  • 氢给体数:
    3
  • 氢受体数:
    7

反应信息

  • 作为产物:
    描述:
    巴比妥酸2,4-二甲氧基苯甲醛丙二腈 在 nickel oxide nanoparticle 作用下, 以 为溶剂, 反应 0.17h, 以76%的产率得到7-amino-5-(2,4-dimethoxyphenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]-pyrimidine-6-carbonitrile
    参考文献:
    名称:
    Nio Nanoparticles: A Highly Efficient Catalyst for the One-Pot Three- Component Synthesis of Pyrano [2, 3-D] Pyrimidine Derivatives in Green Reaction Media
    摘要:
    摘要:使用NiO纳米颗粒有效地强化了环戊基吡喃[2,3-d]嘧啶的合成,通过首要的Knoevenagel,随后的Michael和最终的醛,马隆酸腈和巴比妥酸的杂环化反应。采用先进的技术,如IR,UV,EDX,XRD,SEM和TEM,确定了NiO纳米颗粒的特性。纳米NiO颗粒的大小大多数在<100纳米,呈均一的球形。采用的方法具有简单的处理、相对较短的反应时间、常常具有良好的到高收率、方便的可操作性和环境友好性的优点。
    DOI:
    10.2174/1570178618666211001115655
点击查看最新优质反应信息

文献信息

  • β-CD-catalyzed multicomponent domino reaction: synthesis, characterization, in silico molecular docking and biological evaluation of pyrano[2,3-d]-pyrimidinone derivatives
    作者:Asha V. Chate、Ravindra M. Dongre、Mahadeo K. Khaire、Giribala M. Bondle、Jaiprakash N. Sangshetti、Manoj Damale
    DOI:10.1007/s11164-018-3479-9
    日期:2018.10
    organic synthesis. The combination of multicomponent reactions (MCRs) and unconventional solvents has become a new research direction, which enables simultaneous growth of both MCRs and green solvents toward ideal organic synthesis. In this paper, we have summarized recent results of MCRs obtained in unconventional media using water and β-cyclodextrin, as supramolecular catalyst, for the synthesis of pyrano[2
    摘要 简单而绿色的合成方法是有机合成的重要目标。多组分反应(MCR)和非常规溶剂的结合已成为一个新的研究方向,它使MCR和绿色溶剂同时向理想的有机合成方向生长。在本文中,我们总结了使用水和β-环糊精作为超分子催化剂,在非常规介质中合成吡喃并[2,3- d ]-嘧啶酮( 4a – q )衍生物的MCR的最新结果 。评价化合物的体外抗菌活性。在合成的化合物中,化合物 4h , 4m 和 4p 与用作参考药物的环丙沙星相比,具有更高的抗菌活性。大多数合成的化合物都具有良好的抗菌性能。此外,进行了分子对接研究,以帮助了解最活跃的类似物与C 30类胡萝卜素脱氢角鲨烯合酶的结合相互作用。 图形概要
  • Solvent-free Synthesis of Pyrano[2,3<i>-d</i>]pyrimidine Scaffolds Using per-6-NH<sub>2</sub>-β-CD as a Reusable Supramolecular Host
    作者:Farzaneh Mohamadpour
    DOI:10.1080/00304948.2022.2034460
    日期:2022.5.4
    (2022). Solvent-free Synthesis of Pyrano[2,3-d]pyrimidine Scaffolds Using per-6-NH2-β-CD as a Reusable Supramolecular Host. Organic Preparations and Procedures International: Vol. 54, No. 3, pp. 277-283.
    (2022 年)。使用 per-6-NH2-β-CD 作为可重复使用的超分子主体,无溶剂合成吡喃 [2,3-d] 嘧啶支架。国际有机制剂和程序:卷。54,第 3 期,第 277-283 页。
  • A new role for solar energy as a renewable energy source for catalyst-solvent free gram-scale synthesis of pyrano[2,3-d]pyrimidine scaffolds
    作者:Farzaneh Mohamadpour
    DOI:10.1007/s11164-023-05057-9
    日期:2023.9
    cyclocondensation of aldehyde derivatives, malononitrile, and barbituric acid/1,3-dimethylbarbituric acid via a three-condensation domino reaction can be used to create pyrano[2,3-d]pyrimidine scaffolds. This study establishes solar energy as a novel renewable energy source for the synthesis of pyrano[2,3-d]pyrimidine scaffolds under catalyst-solvent-free conditions, with excellent yields, reaction time savings, and
    在化学领域,人口发展和工业化导致能源消耗增加,因此需要使用可再生能源。不可再生能源不仅排放温室气体,还排放其他危害所有生物的有毒污染物。这显然需要研究人员使用生态上可接受且具有成本效益的可再生能源。醛衍生物、丙二腈和巴比妥酸/1,3-二甲基巴比妥酸通过三缩合多米诺反应进行 Knoevenagel-Michael 环缩合可用于制备吡喃并[2,3-d]嘧啶支架。本研究将太阳能确立为一种用于合成吡喃酮的新型可再生能源[2,3- d]嘧啶支架在无催化剂溶剂条件下具有优异的产率、节省的反应时间和原子经济性。该反应是使用可再生能源(阳光)和相对简单的实验装置在一系列基材上进行的。反应速度极快,无需溶剂或色谱纯化。根据模型底物的多克规模反应,该反应可能会扩大规模而不影响结果。此外,该方法的广泛适用性通过其用于合成现实世界的药物分子得到了证明。
  • Acridine Yellow G: A Photo-induced Electron Transfer Photocatalyst for the Radical Synthesis of Pyrano[2,3- <i>d</i> ]pyrimidines in an Aqueous Medium
    作者:Farzaneh Mohamadpour
    DOI:10.1080/00304948.2024.2308325
    日期:——
    Published in Organic Preparations and Procedures International: The New Journal for Organic Synthesis (Vol. 56, No. 5, 2024)
    发表于《国际有机制备和程序:有机合成新杂志》(第 56 卷,第 5 期,2024 年)
  • Methylene blue as a photo‐redox catalyst employed for the synthesis of pyrano[2,3‐<i>d</i>]pyrimidine scaffolds via a single‐electron transfer/energy transfer pathway
    作者:Farzaneh Mohamadpour
    DOI:10.1002/jhet.4629
    日期:2023.5
    The radical tandem Knoevenagel-Michael cyclocondensation reaction of barbituric acid/1,3-dimethylbarbituric acid, malononitrile, and aryl aldehydes was used to establish a green tandem method for the metal-free synthesis of pyrano[2,3-d]pyrimidine scaffolds. At ambient temperature, photo-excited state functions made from methylene blue (MB+) were used as single-electron transfer and energy transfer
    巴比妥酸/1,3-二甲基巴比妥酸、丙二腈和芳基醛的自由基串联 Knoevenagel-Michael 环缩合反应用于建立无金属合成吡喃[2,3-d]嘧啶支架的绿色串联方法。在环境温度下,亚甲蓝 (MB +) 被用作水性溶剂中的单电子转移和能量转移催化剂,利用可见光作为可持续能源。该项目的目的是加强非金属阳离子染料的使用,这种染料既经济又广泛。亚甲蓝采用尽可能少的催化剂进行光化学催化,具有出色的产率、能源效率和环境友好性,以及出色的原子经济性、省时特性和易于操作。因此,可以获得广泛的环境和长期化学特性。吡喃[2,3- d]计算了嘧啶支架的周转次数和周转频率。令人惊讶的是,克级环化是可以想象的,表明该技术可以用于工业。
查看更多

同类化合物

乙基7'-氨基-6-氟-2,2',4'-三羰基-1,1',2,2',3',4'-六氢螺[吲哚-3,5'-吡喃并[2,3-d]嘧啶]-6'-羧酸酯 7H-吡喃并[2,3-d]嘧啶-7-酮 7H-吡喃并[2,3-d]嘧啶 7,8-二氢-5H-吡喃并[4,3-D]嘧啶-2-胺 5H-吡喃并[4,3-d]嘧啶 5H-吡喃并[2,3-d]嘧啶 2H-吡喃并[2,3-d]嘧啶-6-甲腈,7-氨基-1,3,4,5-四氢-5-(4-甲氧苯基)-2,4-二羰基- 2,4-二氯-7,8-二氢-5H-吡喃[4,3-d]嘧啶 1H-吡喃并[3,4-d]嘧啶 1H-吡喃并[3,2-d]嘧啶 4-(4-methoxyaniline)-5-(phenyl)-8,9-dihydro-5H-chromeno[2,3-d]pyrimidin-6(7H)-one 4-cyclohexyl-2-phenyl-7,8-dihydro-6H-pyranol[3,2-d]pyrimidine 1,3-Bis(p-tolyl)-5-(2'-hydroxyphenyl)-7-methyl-4-oxo-1,2,3,4-tetrahydro-2-thioxo-5H-pyrano<2,3-d>pyrimidine 7,8-dihydro-3H-pyrano[4,3-d]pyrimidin-4(5H)-one 7-amino-2,3,4,5-tetrahydro-5-(3-hydroxyphenyl)-1,3-dimethyl-2,4-dioxo-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile 3-benzyl-6,6,9-trimethyl-6a,7,8,9,10,10a-hexahydro-6H-isochromeno[3,4-d]pyrimidin-1-ol 7'-amino-1-ethyl-2,4'-dioxo-2'-thioxo-1',2',3',4'-tetrahydrospiro[indoline-3,5'-pyrano[2,3-d] pyrimidine]-6'-carbonitrile 7'-amino-2,4'-dioxo-2'-thioxo-1',2',3',4'-tetrahydro-2H-spiro[acenaphthylene-1,5'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile (3-(((2-(4-(but-2-ynamido)-2-methyl-1H-indol-1-yl)-7,8-dihydro-5H-pyrano[4,3-d]pyrimidin-4-yl)amino)methyl)phenyl)boronic acid 7-amino-5-(2,3-dimethoxyphenyl)-1,3-dimethyl-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile 7'-amino-5-chloro-1',3'-dimethyl-2,2',4'-trioxo-1',2',3',4'-tetrahydrospiro[indoline-3,5'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile 7-amino-5-(4-bromophenyl)-1,3-dimethyl-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carbonitrile 7-amino-5-(4-methoxyphenyl)-1,3-dimethyl-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]-pyrimidine-6-carbonitrile 7,8-dihydro-5H-pyrano[4,3-d]pyrimidine ethyl 2,8-dimethyl-10-phenyl-10H-pyrano[3,2-e][1,2,4]triazolo[1,5-c] pyrimidine-9-carboxylate ethyl 10-(4-methoxyphenyl)-2,8-dimethyl-10H-pyrano[3,2-e][1,2,4]triazolo[1,5-c] pyrimidine-9-carboxylate ethyl 3-{[3-(4-methoxyphenyl)isoxazol-5-yl]methyl}-2,7-dimethyl-4-oxo-5-(p-tolyl)-3,5-dihydro-4H-pyrano[2,3-d]pyrimidine-6-carboxylate 2-thioxo-2,3,7,8-tetrahydro-1H-pyrano[4.3-d]pyrimidin-4(5H)-one 7-amino-2,4-dioxo-5-(m-tolyl)-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carbonitrile Ethyl 7-amino-5-(4-hydroxyphenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylate 7-amino-5-(3-chlorophenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile 7-amino-5-(2,4-di-chlorophenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile 7-amino-5-(4-(dimethylamino)phenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile Ethyl 7-amino-5-(3,4-dimethoxyphenyl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carboxylate 7-amino-5-(3,4-dimethoxyphenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile ethyl-7-amino-5-(3-nitrphenyl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylate Ethyl 7-amino-5-(4-nitrophenyl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carboxylate Ethyl 7-amino-5-(4-methylphenyl)-2,4-dioxo-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carboxylate 7'-amino-5-chloro-2,2',4'-trioxo-1',2',3',4'-tetrahydrospiro[indoline-3,5'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile 4-tert-butyl-2-phenyl-7,8-dihydro-6H-pyranol[3,2-d]pyrimidine 6-benzamido-2,3-dihydro-5-methyl-1,3-di(p-chlorophenyl)-2-thioxo-4H-pyrano[2,3-d]pyrimidine-4,7(1H)-dione 6-benzamido-2,3-dihydro-5-methyl-1,3-diphenyl-2-thioxo-4H-pyrano[2,3-d]pyrimidine-4,7(1H)-dione 4-phenylhexahydro-1H-pyrano[2,3-d]pyrimidin-2(8aH)-one 4-(4-methoxyphenyl)hexahydro-1H-pyrano[2,3-d]pyrimidin-2(8aH)-one 7-amino-1,3-dimethyl-2,4-dioxo-5-phenyl-1,3,4,5-tetrahydro-2H-pyrano[2,3-d]pyrimidine-6-carbonitrile 7'‑amino‑2,4′‑dioxo‑2′‑thioxo‑1′,2′,3′,4′‑tetrahydrospiro[indoline‑3,5'‑pyrano[2,3‑d]pyrimidine]‑6'‑carbonitrile 7-Amino-5-(1H-indol-3-yl)-2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d] pyrimidine-6-carbonitrile methyl 2-amino-5,7-dioxospiro[1'-methyl-3'H-indol-3',4-4H-5,6,7,8-tetrahydropyrano[2,3-d]pyramidine]-1'H-2'-one-3-carboxylate 7-benzyl-7-methyl-4-phenyl-3,4,7,8-tetrahydro-1H-pyrano[4,3-d]pyrimidine-2,5-dione 7,7-dimethyl-4-phenyl-2-thioxo-1,2,3,4,7,8-hexahydro-pyrano[4,3-d]pyrimidin-5-one