摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

arsenic acid | 16844-87-4

中文名称
——
中文别名
——
英文名称
arsenic acid
英文别名
Hydrogen arsenate;hydrogen arsorate
arsenic acid化学式
CAS
16844-87-4
化学式
AsO4*3H
mdl
——
分子量
141.943
InChiKey
DJHGAFSJWGLOIV-UHFFFAOYSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -3.43
  • 重原子数:
    5
  • 可旋转键数:
    0
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    83.4
  • 氢给体数:
    1
  • 氢受体数:
    4

SDS

SDS:322ae899e4c6db4f1fafa5f9ac272cc7
查看

反应信息

  • 作为反应物:
    描述:
    ammonium carbonatearsenic acid 以 not given 为溶剂, 生成 砷酸二氢铵
    参考文献:
    名称:
    Proton glassy behavior inRb1x(NH4)xH2AsO4mixed crystal
    摘要:
    DOI:
    10.1103/physrevb.42.638
  • 作为产物:
    描述:
    arsenous acid 在 potassium iodate硫酸 、 potassium iodide 作用下, 以 为溶剂, 生成 arsenic acid
    参考文献:
    名称:
    碘酸碘酸盐氧化的双稳态
    摘要:
    DOI:
    10.1021/j150617a032
点击查看最新优质反应信息

文献信息

  • Intercalation of aliphatic carboxylic acids into layered structures of vanadyl sulfate, phosphate and arsenate
    作者:L. Benš、J. Votinský、J. Kalousová、K. Handlíř
    DOI:10.1016/s0020-1693(00)84852-5
    日期:1990.10
    Abstract Layered complexes VOSO4 · RCOOH, VOPO4 · RCOOH and VOAsO4 · RCOOH (RCOOH means formic, acetic, propionic and butyric acids) have been prepared. The complexes are formed either by the intercalation reaction of the anhydrous host lattice of VOXO4 (X  S, P, As) with liquid carboxylic acids or by exchange reactions of the hydrates VOXO4 · nH2O (n= 2 or 3) or of the intercalates VOXO4 · 2C2H5OH
    摘要制备了层状复合物VOSO4·RCOOH,VOPO4·RCOOH和VOAsO4·RCOOH(RCOOH是指甲酸,乙酸,丙酸和丁酸)。络合物是通过VOXO4(XS,P,As)的无水主体晶格与液态羧酸的插层反应或通过水合物VOXO4·nH2O(n = 2或3)或插层物的交换反应而形成的在脱水剂存在下,VOXO4·2C2H5OH与酸混合。对于所有制备的配合物,均给出了热稳定性,温度分解产物,晶格参数(通过X射线衍射测定)和IR光谱。建议了复合物的可能结构以及在主体层之间插入的酸分子的定位和锚固方式。
  • Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis
    作者:Torsten Krafft、Joan M. Macy
    DOI:10.1046/j.1432-1327.1998.2550647.x
    日期:1998.8
    Chrysiogenes arsenatis is the only bacterium known that respires anaerobically using arsenate as the terminal electron acceptor and the respiratory substrate acetate as the electron donor. During growth, the arsenate is reduced to arsenite; the reduction is catalyzed by an arsenate reductase. This study describes the purification and characterization of a respiratory arsenate reductase (Arr). The enzyme consists of two subunits with molecular masses of 87 kDa (ArrA) and 29 kDa (ArrB), and is a heterodimer α1β1 with a native molecular mass of 123 kDa. The arsenate reductase contains molybdenum, iron, acid‐labile sulfur and zinc as cofactor constituents. The Km of the enzyme for arsenate is 0.3 mM and the Vmax is 7013 μmol arsenate reduced  min−1  mg protein−1. Nitrate, sulfate, selenate and fumarate cannot serve as alternative electron acceptors for the arsenate reductase. Synthesis of the protein is regulated, as arsenate must be present during growth for the enzyme to be fully induced. The N‐terminus of ArrA is similar to a number of procaryotic molybdenum‐containing polypeptides (e.g. the formate dehydrogenases H and N of Escherichia coli). The N‐terminus of ArrB is similar to iron‐sulfur proteins. The respiratory arsenate reductase of C. arsenatis is different from the non‐respiratory arsenate reductases of E. coli and Staphylococcus aureus.
    Chrysiogenes arsenatis 是唯一已知的能够在无氧条件下利用砷酸盐作为终电子受体、乙酸盐作为呼吸底物进行呼吸作用的细菌。在生长过程中,砷酸盐被还原为亚砷酸盐;这一还原过程由砷酸盐还原酶催化。本研究描述了呼吸型砷酸盐还原酶(Arr)的纯化和特性。该酶由两个亚基组成,分子质量分别为87 kDa(ArrA)和29 kDa(ArrB),形成一个异二聚体α1β1,其天然分子质量为123 kDa。砷酸盐还原酶含有钼、铁、酸不稳定硫和锌作为辅因子成分。该酶对砷酸盐的米氏常数(Km)为0.3 mM,最大反应速率(Vmax)为7013 μmol砷酸盐还原 min−1 mg蛋白−1。硝酸盐、硫酸盐、硒酸盐和富马酸盐不能作为砷酸盐还原酶的替代电子受体。该酶的合成受到调控,因为在生长过程中必须存在砷酸盐才能使酶充分诱导。ArrA的N端与多种原核生物来源的含钼多肽(例如大肠杆菌中的H型和N型甲酸脱氢酶)相似。ArrB的N端与铁硫蛋白相似。C. arsenatis的呼吸型砷酸盐还原酶与大肠杆菌和金黄色葡萄球菌中的非呼吸型砷酸盐还原酶不同。
  • All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade
    作者:Joris Messens、José C. Martins、Karolien Van Belle、Elke Brosens、Aline Desmyter、Marjan De Gieter、Jean-Michel Wieruszeski、Rudolph Willem、Lode Wyns、Ingrid Zegers
    DOI:10.1073/pnas.132142799
    日期:2002.6.25

    The mechanism of pI258 arsenate reductase (ArsC) catalyzed arsenate reduction, involving its P-loop structural motif and three redox active cysteines, has been unraveled. All essential intermediates are visualized with x-ray crystallography, and NMR is used to map dynamic regions in a key disulfide intermediate. Steady-state kinetics of ArsC mutants gives a view of the crucial residues for catalysis. ArsC combines a phosphatase-like nucleophilic displacement reaction with a unique intramolecular disulfide bond cascade. Within this cascade, the formation of a disulfide bond triggers a reversible “conformational switch” that transfers the oxidative equivalents to the surface of the protein, while releasing the reduced substrate.

    pI258砷酸还原酶(ArsC)催化的砷酸还原机制已经揭示,其中涉及其P-环结构基序和三个氧化还原活性半胱氨酸。通过X射线晶体学可视化所有必要的中间体,并使用NMR来映射关键二硫键中的动态区域。ArsC突变体的稳态动力学给出了催化关键残基的视角。ArsC将类磷酸酶的亲核置换反应与独特的分子内二硫键级联结合。在此级联中,二硫键的形成触发可逆的“构象开关”,将氧化当量转移至蛋白质表面,同时释放还原底物。
  • Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor
    作者:Rachel N vanden Hoven、Joanne M Santini
    DOI:10.1016/j.bbabio.2004.03.001
    日期:2004.6
    shares similarities to the arsenite oxidases purified from NT-26 and Alcaligenes faecalis, it differs with respect to activity and overall conformation. A c-551-type cytochrome was purified from Hydrogenophaga sp. str. NT-14 and appears to be the physiological electron acceptor for the arsenite oxidase. The cytochrome can also accept electrons from the purified NT-26 arsenite oxidase. A hypothetical
    Hydrogenophaga sp。的异养亚砷酸盐氧化。海峡 NT-14与氧的还原有关,似乎为生长提供能量。砷氧化酶的纯化和部分表征表明它(1)。包含两个异源亚基,AroA(86 kDa)和AroB(16 kDa),(2)。具有306 kDa的天然分子量,表明具有alpha(3)beta(3)构型,以及(3)。包含钼和铁作为辅助因子。虽然Hydrogenophaga sp。海峡 NT-14砷氧化酶与从NT-26和粪便产碱杆菌纯化的砷氧化酶具有相似之处,但活性和总体构象不同。从Hydrogenophaga sp。纯化了c-551型细胞色素。海峡 NT-14似乎是亚砷酸氧化酶的生理电子受体。细胞色素还可以接受来自纯化的NT-26亚砷酸氧化酶的电子。提出了一种用于异养亚砷酸氧化的假设电子传输链。
  • Identification of an<i>aox</i>System That Requires Cytochrome<i>c</i>in the Highly Arsenic-Resistant Bacterium<i>Ochrobactrum tritici</i>SCII24
    作者:Rita Branco、Romeu Francisco、Ana Paula Chung、Paula Vasconcelos Morais
    DOI:10.1128/aem.02798-08
    日期:2009.8
    ABSTRACT

    Microbial biotransformations have a major impact on environments contaminated with toxic elements, including arsenic, resulting in an increasing interest in strategies responsible for how bacteria cope with arsenic. In the present work, we investigated the metabolism of this metalloid in the bacteriumOchrobactrum triticiSCII24. This heterotrophic organism contains two differentarsoperons and is able to oxidize arsenite to arsenate. The presence of arsenite oxidase genes in this organism was evaluated, and sequence analysis revealed structural genes for an As(III) oxidase (aoxAB), ac-type cytochrome (cytC), and molybdopterin biosynthesis (moeA). Two other genes coding for a two-component signal transduction pair (aoxRS) were also identified upstream from the previous gene cluster. The involvement ofaoxgenes in As(III) oxidation was confirmed by functionally expressing them intoO. tritici5bvl1, a non-As(III) oxidizer. Experiments showed that the As(III) oxidation process inO. triticirequires not only the enzyme arsenite oxidase but also the cytochromecencoded in the operon. The fundamental role of this cytochromec, reduced in the presence of arsenite in strain SCII24 but not in anO. triticiΔaoxBmutant, is surprising, since to date this feature has not been found in other organisms. In this strain the presence of anaoxsystem does not seem to confer an additional arsenite resistance capability; however, it might act as part of an As(III)-detoxifying strategy. Such mechanisms may have played a crucial role in the development of early stages of life on Earth and may one day be exploited as part of a potential bioremediation strategy in toxic environments.

    摘要微生物的生物转化对包括砷在内的有毒元素污染的环境有重大影响,因此人们对细菌如何应对砷的策略越来越感兴趣。在本研究中,我们研究了三尖杉赭菌(Ochrobactrum triticiSCII24)对这种金属元素的代谢。这种异养生物含有两种不同的砷过氧化物酶,能够将亚砷酸盐氧化成砷酸盐。对该生物体内亚砷酸盐氧化酶基因的存在情况进行了评估,序列分析发现了 As(III)氧化酶(aoxAB)、ac 型细胞色素(cytC)和钼蝶呤生物合成(moeA)的结构基因。在前一个基因簇的上游还发现了另外两个编码双组分信号转导对(aoxRS)的基因。通过将这些基因表达到非 As(III)氧化剂 O. tritici5bvl1 中,证实了aoxgenes 参与了 As(III)氧化。实验表明,三疣梭子蟹的 As(III)氧化过程不仅需要亚砷酸盐氧化酶,还需要操作子中编码的细胞色素。三尖杉ΔaoxB 基因突变株在亚砷酸盐存在的情况下细胞色素减少,这种细胞色素的基本作用令人惊讶,因为迄今为止在其他生物体中还没有发现过这种特征。在该菌株中,anoxsystem 的存在似乎并不赋予其额外的亚砷酸盐抗性能力;但它可能是 As(III)解毒策略的一部分。这种机制可能在地球生命早期阶段的发展中发挥了至关重要的作用,也许有一天会被用作有毒环境中潜在生物修复策略的一部分。
查看更多